We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
60
2
avatar

can you solve the initial value problem for:

 

 

dy/dx= xy-2x+y-2 , y(2)= -1

 Aug 19, 2019
 #1
avatar+23071 
+2

can you solve the initial value problem for:

\(\dfrac{dy}{dx}= xy-2x+y-2,\ y(2)= -1\)

 

\(\begin{array}{|rclcl|} \hline \mathbf{\dfrac{dy}{dx}} &=&\mathbf{ xy-2x+y-2 } \\\\ \dfrac{dy}{dx} &=& x(y-2)+ (y-2) \\\\ \dfrac{dy}{dx} &=& (y-2)(x+1) \\\\ \dfrac{dy}{(y-2)} &=& (x+1)dx \\\\ \large{ \int } \dfrac{1}{(y-2)}\ dy &=&\large{ \int } (x+1)\ dx \\\\ \mathbf{\ln(y-2) + c_1} &=& \mathbf{\dfrac{x^2}{2} +x + c_2 } \\ \hline && \ln(y-2) + c_1 &=& \dfrac{x^2}{2} +x + c_2 \quad | \quad y(2) = -1 \\ && \ln(-1-2) + c_1 &=& \dfrac{2^2}{2} +2 + c_2 \\ && \ln(-3) + c_1 &=& 4 + c_2 \quad | \quad \boxed{\mathbf{c_1 = -\ln(-3)}} \\ && \ln(-3) -\ln(-3) &=& 4 + c_2 \\ && 0 &=& 4 + c_2 \\ && \mathbf{c_2} &=& \mathbf{-4} \\ \hline \mathbf{\ln(y-2) -\ln(-3)} &=& \mathbf{\dfrac{x^2}{2} +x -4 } \\ \ln\left(\dfrac{y-2}{-3}\right) &=& \dfrac{x^2}{2} +x -4 \\ \dfrac{y-2}{-3} &=& e^\left(\dfrac{x^2}{2} +x -4 \right) \\ y-2 &=& -3e^\left(\dfrac{x^2}{2} +x -4 \right) \\ \mathbf{ y(x)} &=& \mathbf{2-3e^\left(\dfrac{x^2}{2} +x -4 \right)} \\ \hline \end{array} \)

 

laugh

 Aug 19, 2019
 #2
avatar
+1

THANK YOU!

Guest Aug 19, 2019

28 Online Users

avatar
avatar
avatar
avatar