We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
92
1
avatar

In triangle ABC (see Figure 1.4),  BCA = 90◦, and D is the foot of
the perpendicular line segment from C to segment AB. Given that |AB| = x and
 A = θ, express all the lengths of the segments in Figure 1.4 in terms of x and θ.

 Aug 16, 2019
 #1
avatar+23273 
+2

In triangle ABC (see Figure 1.4), \(\angle BCA = 90^\circ\) , and D is the foot of
the perpendicular line segment from C to segment AB. Given that |AB| = x and

\(\angle A = \theta\), express all the lengths of the segments in Figure 1.4 in terms of x and \(\theta\).

 

\(\begin{array}{|lrcll|} \hline (1) & \mathbf{|CB|} &=& \mathbf{x\cdot \sin(\theta)} \\ (2) & \mathbf{|CA|} &=& \mathbf{x\cdot \cos(\theta)} \\\\ & \sin(\theta) &=& \dfrac{|CD|}{|CA|} \\ & |CD| &=& |CA|\cdot \sin(\theta) \\ (3)& \mathbf{|CD|} &=& \mathbf{x\cdot \cos(\theta)\cdot \sin(\theta) } \\\\ & \cos(\theta) &=& \dfrac{|AD|}{|CA|} \\ & |AD| &=& |CA|\cdot \cos(\theta) \\ & |AD| &=& x\cdot \cos(\theta)\cdot \cos(\theta) \\ (4)& \mathbf{|AD|} &=& \mathbf{x\cdot \cos^2(\theta)} \\\\ & |DB| &=& x-|AD| \\ & |DB| &=& x-x\cdot \cos^2(\theta) \\ & |DB| &=& x\cdot\left(1-\cos^2(\theta)\right) \quad | \quad \sin^2(\theta)+cos^2(\theta)=1 \\ (5)& \mathbf{|DB|} &=& \mathbf{x\cdot\sin^2(\theta)} \\ \hline \end{array}\)

 

laugh

 Aug 16, 2019

28 Online Users

avatar