We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
128
2
avatar

Find the absolute value of the difference of single-digit integers A and B such that 

 

BBA_6+41B_6+A15_6=A152_6

 

 

Express your answer in base 6.

 Oct 10, 2018
 #1
avatar+5172 
+1

\(BBA_6+41B_6+A15_6=A152_6 \\ \text{looking at the 1's digit we have, (all numbers will be base 6)} \\ A+B+5 =2 \mod 6 \\ \text{given the possible ranges of A and B we have}\\ A+B = 9 \text{ with a carry of 2 or }\\ A+B = 3 \text{ with a carry of 1}\)

 

\(\text{let's suppose the first case}\\ \text{then looking at the 6's digit we have}\\ B+1+1+2 = 5 \mod 6\\ B+4 = 5 \mod 6 \\ B = 7 \text{ or }B=1 \\ \text{well B=7 is clearly out as B<6, and A+B=9, which would make A=8, which is also out}\)

 

\(\text{so let's assume the 2nd case}\\ \text{looking at the 6's digit we have}\\ B+1+1+1 = 5 \mod 6\\ B+3 = 5 \mod 6\\ B=8 \text{ or }B=2 \\ \text{again B=8 is clearly out. If B=2 then A=1 and this seems like a solution}\)

 

\(\text{checking we have }\\ 221 + 412+115 = 1152 \text{ all in base 6}\)

 

\(|A-B| = |1-2|=1\)

.
 Oct 10, 2018
edited by Rom  Oct 10, 2018
 #2
avatar+101369 
+1

We have the following equation

 

( 36B + 6B + A )  + ( 4*36 + 1* 6 + B)  + (36A  + 6  + 5)  = 216A + 36 + 5*6 + 2

 

Simplify

 

43B  + 37A  + 150 +  11  = 216A + 68

 

43B + 37A  + 161  = 216A + 68

 

43B   = 179A - 93

 

Note....this equation will be true when B  = 2  and A  = 1

 

So

 

l A  - B  l  =   l 1   - 2   l    =  l  -1  l   =   1

 

 

cool cool cool

 Oct 10, 2018

12 Online Users

avatar
avatar