+0  
 
+1
46
2
avatar

The graphs of $y=3-x^2+x^3$ and $y=1+x^2+x^3$ intersect in multiple points. Find the maximum difference between the $y$-coordinates of these intersection points.

Guest Mar 28, 2018
Sort: 

2+0 Answers

 #1
avatar+26642 
+2

This graph should help:

Alan  Mar 28, 2018
 #2
avatar+19207 
+1

The graphs of $y=3-x^2+x^3$ and $y=1+x^2+x^3$ intersect in multiple points. Find the maximum difference between the $y$-coordinates of these intersection points.

 

 

\(\begin{array}{|rcll|} \hline 3-x^2+\not{x^3} &=& 1+x^2+ \not{x^3} \\ 3-x^2 &=& 1+x^2 \quad & | \quad -1-x^2 \\ 3-x^2 -1-x^2 &=& 0 \\ 2-2x^2 &=& 0 \\ 2(1-x^2) &=& 0 \quad & | \quad : 2 \\ 1-x^2 &=& 0 \\ x^2 &=& 1 \quad & | \quad \sqrt() \\ x &=& \pm\sqrt{1} \\\\ x_1 &=& 1 \\ y_1 &=& y(1) \\ &=& 1+1+1 \\ \mathbf{y_1 } &\mathbf{=}& \mathbf{3} \\\\ x_2 &=& -1 \\ y_2 &=& y(-1) \\ &=& 1-1+1 \\ \mathbf{y_2} &\mathbf{=}& \mathbf{1} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline y_1 - y_2 &=& 3-1 \\ &=& 2 \\ \hline \end{array}\)

 

The maximum difference between the  y-coordinates of these intersection points is 2

 

 

 

laugh

heureka  Mar 28, 2018

14 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details