+0  
 
0
510
1
avatar

onsider the integral \({I}_{n}-\int_{0}^{1}x^n *{e}^{-2x}dx\)

 

1.Express \({I}_{n}\) in terms of\({I}_{n-1} for ....n>=1 \)

 

2. Hence, evaluate \(\int_{1}^{e} (lny/y)^3 dy \)

 Apr 11, 2016
 #1
avatar
0

2-

 

Compute the definite integral:
 integral_1^e (log^3(y))/y^3 dy
For the integrand (log^3(y))/y^3, integrate by parts,  integral f dg = f g- integral g df, where
 f = log^3(y),     dg = 1/y^3  dy,
 df = (3 log^2(y))/y  dy,     g = -1/(2 y^2):
  =  (-(log^3(y))/(2 y^2))|_1^e+1/2 integral_1^e (3 log^2(y))/y^3 dy
Evaluate the antiderivative at the limits and subtract.
 (-(log^3(y))/(2 y^2))|_1^e = (-(log^3(e))/(2 e^2))-(-(log^3(1))/(2 1^2)) = -1/(2 e^2):
  =  -1/(2 e^2)+1/2 integral_1^e (3 log^2(y))/y^3 dy
Factor out constants:
  =  -1/(2 e^2)+3/2 integral_1^e (log^2(y))/y^3 dy
For the integrand (log^2(y))/y^3, integrate by parts,  integral f dg = f g- integral g df, where
 f = log^2(y),     dg = 1/y^3  dy,
 df = (2 log(y))/y  dy,     g = -1/(2 y^2):
  =  -1/(2 e^2)+(-(3 log^2(y))/(4 y^2))|_1^e+3/4 integral_1^e (2 log(y))/y^3 dy
Evaluate the antiderivative at the limits and subtract.
 (-(3 log^2(y))/(4 y^2))|_1^e = (-(3 log^2(e))/(4 e^2))-(-(3 log^2(1))/(4 1^2)) = -3/(4 e^2):
  =  -5/(4 e^2)+3/4 integral_1^e (2 log(y))/y^3 dy
Factor out constants:
  =  -5/(4 e^2)+3/2 integral_1^e (log(y))/y^3 dy
For the integrand (log(y))/y^3, integrate by parts,  integral f dg = f g- integral g df, where
 f = log(y),     dg = 1/y^3  dy,
 df = 1/y  dy,     g = -1/(2 y^2):
  =  -5/(4 e^2)+(-(3 log(y))/(4 y^2))|_1^e+3/4 integral_1^e 1/y^3 dy
Evaluate the antiderivative at the limits and subtract.
 (-(3 log(y))/(4 y^2))|_1^e = (-(3 log(e))/(4 e^2))-(-(3 log(1))/(4 1^2)) = -3/(4 e^2):
  =  -2/e^2+3/4 integral_1^e 1/y^3 dy
Apply the fundamental theorem of calculus.
The antiderivative of 1/y^3 is -1/(2 y^2):
  =  -2/e^2+(-3/(8 y^2))|_1^e
Evaluate the antiderivative at the limits and subtract.
 (-3/(8 y^2))|_1^e = (-3/(8 e^2))-(-3/(8 1^2)) = 3/8-3/(8 e^2):
Answer: |  =  3/8-19/(8 e^2)

 Apr 11, 2016

1 Online Users