+0  
 
0
106
3
avatar

Find a complex number whose square equals i. 

 Oct 3, 2019
 #1
avatar+19879 
0

.7071 + .7071 i

 Oct 3, 2019
 #2
avatar
0

Could you please explain?

Thanks so much

Guest Oct 3, 2019
 #3
avatar+6046 
+1

\(i = e^{i \pi/2+2\pi k},~i \in \mathbb{Z}\\ z^2 = e^{i (\pi/2+2\pi k)}\\ z = \exp\left(i\dfrac{\frac \pi 2 + 2\pi k}{2}\right) =\\ \exp\left(i\left(\frac \pi 4 + \pi k\right)\right),~k = 0,1 = \\ e^{i\pi/4},~e^{i5\pi/4}=\\ \pm \dfrac{1}{\sqrt{2}}(1+i)\)

.
 Oct 3, 2019

18 Online Users

avatar