+0  
 
0
539
2
avatar

Let $f(x) = Ax + B$ and $g(x) = Bx + A$, where $A \neq B$. If $f(g(x)) - g(f(x)) = B - A$, what is $A + B$?

 Nov 16, 2014

Best Answer 

 #1
avatar+33661 
+5

f(g(x)) = f(Bx + A) → A(Bx + A) + B → ABx + A2 + B

g(f(x)) = g(Ax + B) → B(Ax + B) + A → BAx + B2 + A

 

f(g(x)) - g(f(x)) = A2 - B2 + B - A → (A - B)(A + B) - (A - B) → (A - B)(A + B -1) 

 

so we must have (A - B)(A + B -1) = B - A

Since B ≠ A we can divide both sides by A - B to get A + B - 1 = -1, so A + B = 0

.

 Nov 16, 2014
 #1
avatar+33661 
+5
Best Answer

f(g(x)) = f(Bx + A) → A(Bx + A) + B → ABx + A2 + B

g(f(x)) = g(Ax + B) → B(Ax + B) + A → BAx + B2 + A

 

f(g(x)) - g(f(x)) = A2 - B2 + B - A → (A - B)(A + B) - (A - B) → (A - B)(A + B -1) 

 

so we must have (A - B)(A + B -1) = B - A

Since B ≠ A we can divide both sides by A - B to get A + B - 1 = -1, so A + B = 0

.

Alan Nov 16, 2014
 #2
avatar
0

Thanks alan!!

 Nov 16, 2014

2 Online Users

avatar