f(g(x)) = f(Bx + A) → A(Bx + A) + B → ABx + A2 + B
g(f(x)) = g(Ax + B) → B(Ax + B) + A → BAx + B2 + A
f(g(x)) - g(f(x)) = A2 - B2 + B - A → (A - B)(A + B) - (A - B) → (A - B)(A + B -1)
so we must have (A - B)(A + B -1) = B - A
Since B ≠ A we can divide both sides by A - B to get A + B - 1 = -1, so A + B = 0
.
f(g(x)) = f(Bx + A) → A(Bx + A) + B → ABx + A2 + B
g(f(x)) = g(Ax + B) → B(Ax + B) + A → BAx + B2 + A
f(g(x)) - g(f(x)) = A2 - B2 + B - A → (A - B)(A + B) - (A - B) → (A - B)(A + B -1)
so we must have (A - B)(A + B -1) = B - A
Since B ≠ A we can divide both sides by A - B to get A + B - 1 = -1, so A + B = 0
.