4)-
Find the following limit:
lim_(x->0) (1 - e^(2 x))/(sin(x))
Applying l'Hôpital's rule, we get that
lim_(x->0) (1 - e^(2 x))/(sin(x)) | = | lim_(x->0) ( d/( dx)(1 - e^(2 x)))/( d/( dx) sin(x))
| = | lim_(x->0) (-2 e^(2 x))/(cos(x))
| = | lim_(x->0) -(2 e^(2 x))/(cos(x))
lim_(x->0) -(2 e^(2 x))/(cos(x))
lim_(x->0) -(2 e^(2 x))/(cos(x)) = -(2 e^(2 0))/(cos(0)) = -2:
Answer: |-2
6)-
Find the following limit:
lim_(x->0) (sin^2(x))/(e^(5 x) - 1)
(sin^2(x))/(e^(5 x) - 1) = (sin^2(x))/(e^(5 x) - 1):
lim_(x->0) (sin^2(x))/(e^(5 x) - 1)
Applying l'Hôpital's rule, we get that
lim_(x->0) (sin^2(x))/(e^(5 x) - 1) | = | lim_(x->0) ( d/( dx) sin^2(x))/( d/( dx)(e^(5 x) - 1))
| = | lim_(x->0) (2 sin(x) cos(x))/(5 e^(5 x))
| = | lim_(x->0) 2/5 e^(-5 x) sin(x) cos(x)
lim_(x->0) 2/5 e^(-5 x) cos(x) sin(x)
lim_(x->0) 2/5 e^(-5 x) sin(x) cos(x) = 2/5 e^(-5 0) sin(0) cos(0) = 0:
Answer: | =0
4)-
Find the following limit:
lim_(x->0) (1 - e^(2 x))/(sin(x))
Applying l'Hôpital's rule, we get that
lim_(x->0) (1 - e^(2 x))/(sin(x)) | = | lim_(x->0) ( d/( dx)(1 - e^(2 x)))/( d/( dx) sin(x))
| = | lim_(x->0) (-2 e^(2 x))/(cos(x))
| = | lim_(x->0) -(2 e^(2 x))/(cos(x))
lim_(x->0) -(2 e^(2 x))/(cos(x))
lim_(x->0) -(2 e^(2 x))/(cos(x)) = -(2 e^(2 0))/(cos(0)) = -2:
Answer: |-2
6)-
Find the following limit:
lim_(x->0) (sin^2(x))/(e^(5 x) - 1)
(sin^2(x))/(e^(5 x) - 1) = (sin^2(x))/(e^(5 x) - 1):
lim_(x->0) (sin^2(x))/(e^(5 x) - 1)
Applying l'Hôpital's rule, we get that
lim_(x->0) (sin^2(x))/(e^(5 x) - 1) | = | lim_(x->0) ( d/( dx) sin^2(x))/( d/( dx)(e^(5 x) - 1))
| = | lim_(x->0) (2 sin(x) cos(x))/(5 e^(5 x))
| = | lim_(x->0) 2/5 e^(-5 x) sin(x) cos(x)
lim_(x->0) 2/5 e^(-5 x) cos(x) sin(x)
lim_(x->0) 2/5 e^(-5 x) sin(x) cos(x) = 2/5 e^(-5 0) sin(0) cos(0) = 0:
Answer: | =0
Since we have 0/0 situations , we can use L'Hospital's Rule in both cases
4. lim [1 - e^(2x) ] / sin x = lim [ -2e^(2x)] / cos x = -2/1 = -2
x → 0 x → 0
6. lim [sin^2 x ] / [ e^(5x) -1` ] = lim [2sinx cos x] / [5 e^(5x) ] = lim [ sin 2x] / [ 5e^(5x) ] = 0/5 = 0
x → 0 x → 0 x → 0
There are 20 responses here and I cannot see a single one that answers the question 7.
And it seems to me that question 7 is the one that is highlighted :/
\(\quad \displaystyle\lim_{x \rightarrow 4}\: \frac{\sqrt{5x-4}-4}{4-x}\\ \text{Rationalize the numerator}\\ = \displaystyle\lim_{x \rightarrow 4}\: \frac{(\sqrt{5x-4}-4)(\sqrt{5x-4}+4)}{(4-x)(\sqrt{5x-4}+4)}\\ = \displaystyle\lim_{x \rightarrow 4}\: \frac{(5x-4-16)}{(4-x)(\sqrt{5x-4}+4)}\\ = \displaystyle\lim_{x \rightarrow 4}\: \frac{5(x-4)}{-(x-4)(\sqrt{5x-4}+4)}\\ = \displaystyle\lim_{x \rightarrow 4}\: \frac{5}{-(\sqrt{5x-4}+4)}\\~\\ =\dfrac{-5}{8} \)