+0  
 
0
1581
1
avatar+612 

If $1 \le a \le 10$ and $1 \le b \le 36$, for how many ordered pairs of integers $(a, b)$ is $\sqrt{a + \sqrt{b}}$ an integer?

 Apr 21, 2018
 #1
avatar+129852 
0

\(1 \le a \le 10$ and $1 \le b \le 36 \)

 

\(\sqrt{a + \sqrt{b}} \)

 

b  is  only an integer when  b  = 1, 4, 9, 16, 25 , 36

The possible pairs of (a, b)  are

(1, 9) 

(2, 4) 

(3, 36)

(4, 25)

(5, 16)

(6, 9)

(7, 4)

(8, 1)

(10, 36)

 

So.....nine possible ordered pairs

 

 

cool cool cool

 Apr 21, 2018

0 Online Users