We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
94
3
avatar

In the diagram, D and E are the midpoints of overline{AB} and overline{BC} respectively. Determine the sum of the x and y coordinates of F, the point of intersection of overline{AE} and overline{CD}.

 

Diagram at: https://latex.artofproblemsolving.com/5/5/0/55002ffdc5d288b4984c4eba461a467dcced7760.png

 Jul 31, 2019
 #1
avatar+103715 
0

The pic is not displaying for me.

 Aug 1, 2019
 #2
avatar+23082 
+2

In the diagram, \(D\) and \(E\) are the midpoints of \(\overline{AB}\) and \(\overline{BC}\) respectively.

Determine the sum of the \(x\) and \(y\) coordinates of \(F\), the point of intersection of \(\overline{AE}\) and \(\overline{CD}\).

 

\(\text{Let $\vec{A} =\dbinom06 $} \\ \text{Let $\vec{D} =\dfrac{\vec{A}}{2} = \dbinom03 $} \\ \text{Let $\vec{C} =\dbinom80 $} \\ \text{Let $\vec{E} =\dfrac{\vec{C}}{2} = \dbinom40 $} \\ \text{Let $\vec{F} = \dbinom x y $} \)

 

\(\begin{array}{|lrcll|} \hline (1) & \vec{F} &=& \vec{E}+\lambda(\vec{A}-\vec{E}) \quad \lambda \text{ is a scalar } \\ (2) & \vec{F} &=& \vec{D}+\mu(\vec{C}-\vec{D}) \quad \mu \text{ is a scalar } \\ \hline &\vec{F} = \vec{E}+\lambda(\vec{A}-\vec{E}) &=& \vec{D}+\mu(\vec{C}-\vec{D}) \\ & \mathbf{ \vec{E}+\lambda(\vec{A}-\vec{E}) } &=& \mathbf{\vec{D}+\mu(\vec{C}-\vec{D})} \\ & \lambda(\vec{A}-\vec{E})-\mu(\vec{C}-\vec{D}) &=& \vec{D}-\vec{E} \\\\ &&& \boxed{ \vec{A}-\vec{E} =\dbinom06-\dbinom40=\dbinom{-4}{6} \\ \vec{C}-\vec{D} =\dbinom80-\dbinom03=\dbinom{8}{-3} \\ \vec{D}-\vec{E} =\dbinom03-\dbinom40=\dbinom{-4}{3} }\\\\ & \lambda\dbinom{-4}{6}-\mu\dbinom{8}{-3} &=& \dbinom{-4}{3} \quad | \quad \times \dbinom{3}{8} \\\\ & \lambda\dbinom{-4}{6}\dbinom{3}{8}-\mu\underbrace{\dbinom{8}{-3}\dbinom{3}{8}}_{=0} &=& \dbinom{-4}{3}\dbinom{3}{8} \\ & \lambda\dbinom{-4}{6}\dbinom{3}{8} &=& \dbinom{-4}{3}\dbinom{3}{8} \\ & \lambda(-12+48) &=& -12+24 \\ & \lambda(36) &=& 12 \quad | \quad : 12 \\ & 3\lambda &=& 1 \\ &\mathbf{ \lambda } &=& \mathbf{ \dfrac{1}{3} } \\ \hline & \vec{F} &=& \vec{E}+\lambda(\vec{A}-\vec{E}) \\ & \vec{F} &=& \dbinom40+\dfrac{1}{3}\dbinom{-4}{6} \\ & \vec{F} &=& \begin{pmatrix} 4-\dfrac{4}{3} \\ \dfrac{6}{3} \end{pmatrix} \\ & \mathbf{\vec{F}} &=& \mathbf{ \begin{pmatrix} \dfrac{8}{3} \\ 2 \end{pmatrix} } \\\\ & x+y &=& \dfrac{8}{3} + 2 \\ &\mathbf{ x+y } &=& \mathbf{\dfrac{14}{3}} \\ \hline \end{array}\)

 

laugh

 Aug 1, 2019
 #3
avatar
+1

Thank you!

Guest Aug 1, 2019

15 Online Users

avatar