+0  
 
0
60
1
avatar

When x is divided by each of 4, 5, and 6, remainders of 3, 4, and 5 (respectively) are obtained. What is the smallest possible positive integer value of x?

Guest Aug 8, 2018

Best Answer 

 #1
avatar+19992 
+1

When x is divided by each of 4, 5, and 6, remainders of 3, 4, and 5 (respectively) are obtained.

What is the smallest possible positive integer value of x?


\(\begin{array}{|lrclcrcl|} \hline & x &\equiv& 3 \pmod 4 &\text{or} & x &\equiv& -1 \pmod 4 \\ & x &\equiv& 4 \pmod 5 &\text{or} & x &\equiv& -1 \pmod 5 \\ & x &\equiv& 5 \pmod 6 &\text{or} & x &\equiv& -1 \pmod 6 \\\\ \Rightarrow & x &\equiv& -1 \pmod{\text{lcm}(4,5,6)} \\ & x &\equiv& -1 \pmod{60} \\ & x &\equiv& -1+60 \pmod{60} \\ & \mathbf{x} & \mathbf{\equiv} & \mathbf{59 \pmod{60}} \\ \hline \end{array}\)

 

The smallest possible positive integer value x is 59

 

laugh

heureka  Aug 8, 2018
edited by heureka  Aug 8, 2018
edited by heureka  Aug 8, 2018
 #1
avatar+19992 
+1
Best Answer

When x is divided by each of 4, 5, and 6, remainders of 3, 4, and 5 (respectively) are obtained.

What is the smallest possible positive integer value of x?


\(\begin{array}{|lrclcrcl|} \hline & x &\equiv& 3 \pmod 4 &\text{or} & x &\equiv& -1 \pmod 4 \\ & x &\equiv& 4 \pmod 5 &\text{or} & x &\equiv& -1 \pmod 5 \\ & x &\equiv& 5 \pmod 6 &\text{or} & x &\equiv& -1 \pmod 6 \\\\ \Rightarrow & x &\equiv& -1 \pmod{\text{lcm}(4,5,6)} \\ & x &\equiv& -1 \pmod{60} \\ & x &\equiv& -1+60 \pmod{60} \\ & \mathbf{x} & \mathbf{\equiv} & \mathbf{59 \pmod{60}} \\ \hline \end{array}\)

 

The smallest possible positive integer value x is 59

 

laugh

heureka  Aug 8, 2018
edited by heureka  Aug 8, 2018
edited by heureka  Aug 8, 2018

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.