We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Help please

0
238
1
+146

The diagonals of rectangle PQRS intersect at point x. if PS = 6 and RS = 8, then what is sin PXS?

Nov 18, 2018

### 1+0 Answers

#1
+101181
+1

P               Q

6      X

S      8         R

This is similar to your other problem

Triangle PSR  forms a  6-8-10  Pythagorean Right triangle with PR   = 10

So....PX  =  SX  =  (1/2) (10) =  5

Using the Law of Cosines

PS^2  = PX^2 + SX^2  - 2(PX * SX)cosPXS

6^2 = 5^2 + 5^2  - 2 (5 * 5)cosPXS

36 - 2(5)^2

_________  =  cos PXS

-2(5)^2

36  - 50

______    =   cos PXS

-50

50 - 36                           14            7

_____   =  cos PXS  =   ___ =     ___

50                               50           25

Since  PXS is acute.....then its sine will be positive  and we can find it as

sin PXS  = √ [ 1 - cos^2 PXS]  =  √ [ 1 -  (7/25)^2 ]  = √ [ 1 - 49/625]  =  √ [625 - 49]/ 25  =

√576/ 25   =    24 / 25

Nov 18, 2018