We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
158
1
avatar+146 

The diagonals of rectangle PQRS intersect at point x. if PS = 6 and RS = 8, then what is sin PXS?

 Nov 18, 2018
 #1
avatar+99580 
+1

P               Q

 

6      X

 

S      8         R

 

This is similar to your other problem

 

Triangle PSR  forms a  6-8-10  Pythagorean Right triangle with PR   = 10

So....PX  =  SX  =  (1/2) (10) =  5

 

Using the Law of Cosines

PS^2  = PX^2 + SX^2  - 2(PX * SX)cosPXS

6^2 = 5^2 + 5^2  - 2 (5 * 5)cosPXS

 

36 - 2(5)^2

_________  =  cos PXS

 -2(5)^2

 

 

36  - 50

______    =   cos PXS

  -50

 

 

50 - 36                           14            7

_____   =  cos PXS  =   ___ =     ___

   50                               50           25

 

Since  PXS is acute.....then its sine will be positive  and we can find it as

 

sin PXS  = √ [ 1 - cos^2 PXS]  =  √ [ 1 -  (7/25)^2 ]  = √ [ 1 - 49/625]  =  √ [625 - 49]/ 25  =

 

√576/ 25   =    24 / 25

 

 

 

cool cool cool

 Nov 18, 2018

26 Online Users