+0  
 
0
173
1
avatar

What is the largest value of $x$ such that the expression

\( \[\dfrac{x+1}{8x^2-65x+8}\]\)

is not defined?

Guest Dec 29, 2017

Best Answer 

 #1
avatar+7155 
+1

The expression  \(\frac{x+1}{8x^2-65x+8}\)   is not defined when the denominator equals zero.

 

So to find all the  x  values that cause the expression to be undefined, set the denominator = 0 .

 

8x2 - 65x + 8  =  0            Now we need to solve this equation for  x .

                                         We can factor the left side like this....

8x2 - 64x - x + 8  =  0

                                         Factor  8x  out of the first two terms, factor  -1  out of the last two terms.

8x(x - 8) - 1(x - 8)  =  0

                                         Factor  x-8  out of both terms.

(x - 8)(8x - 1)  =  0

                                         Set each factor equal to zero and solve for  x .

 

x - 8  =  0          or          8x - 1  =  0

x  =  8               or          8x  =  1

                                        x  =  1/8

 

So the expression is not defined when  x = 8  and when  x = 1/8  .

The largest of these values is  8 .

hectictar  Dec 29, 2017
 #1
avatar+7155 
+1
Best Answer

The expression  \(\frac{x+1}{8x^2-65x+8}\)   is not defined when the denominator equals zero.

 

So to find all the  x  values that cause the expression to be undefined, set the denominator = 0 .

 

8x2 - 65x + 8  =  0            Now we need to solve this equation for  x .

                                         We can factor the left side like this....

8x2 - 64x - x + 8  =  0

                                         Factor  8x  out of the first two terms, factor  -1  out of the last two terms.

8x(x - 8) - 1(x - 8)  =  0

                                         Factor  x-8  out of both terms.

(x - 8)(8x - 1)  =  0

                                         Set each factor equal to zero and solve for  x .

 

x - 8  =  0          or          8x - 1  =  0

x  =  8               or          8x  =  1

                                        x  =  1/8

 

So the expression is not defined when  x = 8  and when  x = 1/8  .

The largest of these values is  8 .

hectictar  Dec 29, 2017

12 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.