+0

0
114
1

What is the largest value of $x$ such that the expression

$$$\dfrac{x+1}{8x^2-65x+8}$$$

is not defined?

Guest Dec 29, 2017

#1
+6943
+1

The expression  $$\frac{x+1}{8x^2-65x+8}$$   is not defined when the denominator equals zero.

So to find all the  x  values that cause the expression to be undefined, set the denominator = 0 .

8x2 - 65x + 8  =  0            Now we need to solve this equation for  x .

We can factor the left side like this....

8x2 - 64x - x + 8  =  0

Factor  8x  out of the first two terms, factor  -1  out of the last two terms.

8x(x - 8) - 1(x - 8)  =  0

Factor  x-8  out of both terms.

(x - 8)(8x - 1)  =  0

Set each factor equal to zero and solve for  x .

x - 8  =  0          or          8x - 1  =  0

x  =  8               or          8x  =  1

x  =  1/8

So the expression is not defined when  x = 8  and when  x = 1/8  .

The largest of these values is  8 .

hectictar  Dec 29, 2017
Sort:

#1
+6943
+1

The expression  $$\frac{x+1}{8x^2-65x+8}$$   is not defined when the denominator equals zero.

So to find all the  x  values that cause the expression to be undefined, set the denominator = 0 .

8x2 - 65x + 8  =  0            Now we need to solve this equation for  x .

We can factor the left side like this....

8x2 - 64x - x + 8  =  0

Factor  8x  out of the first two terms, factor  -1  out of the last two terms.

8x(x - 8) - 1(x - 8)  =  0

Factor  x-8  out of both terms.

(x - 8)(8x - 1)  =  0

Set each factor equal to zero and solve for  x .

x - 8  =  0          or          8x - 1  =  0

x  =  8               or          8x  =  1

x  =  1/8

So the expression is not defined when  x = 8  and when  x = 1/8  .

The largest of these values is  8 .

hectictar  Dec 29, 2017

### 30 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details