Find the minimum value of \(2 \log_{10} x - \log_x \frac{1}{100} \) for x > 1.
a=2; c=2*log(a) - logn(a, (1/100));printc, a; a++;if(a<100, goto1, 0): The minimum value occurs at x = 10 2 \log_{10} x - \log_x \frac{1}{100} = 4 - which is the minimum value