We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
160
2
avatar

Let \(t\) be a root of \(f(x) = x^3 - x + 2\). Evaluate \(t^6 - t^2 + 4t\).

 Mar 1, 2019
 #1
avatar+19832 
+1

The only root of x^3-x+2 is   -1.5214  (by graphing)

 

-1.5214^6 - ( -1.5214)^2 +4(-1.5214) = 4.00

 Mar 1, 2019
 #2
avatar+23337 
+1

Let t be a root of

\(f(x) = x^3 - x + 2\).

Evaluate

\(t^6 - t^2 + 4t\).

 

1.

\(\begin{array}{|rcll|} \hline f(t) = t^3 - t + 2 &=& 0 \\ t^3 - t + 2 &=& 0 \\ \mathbf{t^3} &\mathbf{=}&\mathbf{t-2} \\ \hline \end{array}\)

 

2.

\(\begin{array}{|rcll|} \hline t^6 - t^2 + 4t &=& (t^3)^2 - t^2 + 4t \quad | \quad \mathbf{t^3=t-2} \\ &=& (t-2)^2 - t^2 + 4t \\ &=& t^2-4t + 4 - t^2 + 4t \\ \mathbf{t^6 - t^2 + 4t} &\mathbf{=}&\mathbf{4} \\ \hline \end{array} \)

 

laugh

 Mar 1, 2019

45 Online Users

avatar