We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
221
1
avatar

For what values of  is

\(\frac{x^2 + x + 3}{2x^2 + x - 6} \ge 0?\)
Note: Be thorough and explain why all points in your answer are solutions and why all points outside your answer are not solutions.

 

I looked at Melody's answer but I still don't get it.

 Jun 29, 2018
 #1
avatar+101360 
+1

 x^2 + x + 3 

___________    ≥   0

2x^2  + x - 6

 

Look at the graph of   x^2 + x + 3  here :

https://www.desmos.com/calculator/grdcjwwkrt

Note that it is positive for all x...so...the only thing that can make this function negative are x values that make the denominator negative   because 

 

 (positive) 

________   =   negative

(negative)

 

So  factor the bottom  function  and set it to  0   and we have

 

(2x - 3) ( x + 2)   = 0

 

Set  each factor to  0 and solve

 

2x - 3  = 0           x + 2  = 0

2x  =3                 x  = - 2

x  = 3/2 

 

So...we  have the  following values on the number line    x  =- 2  and  x  =3/2

 

And  the  values that  make  2x^2 + x - 6   negative  will come from these possible intervals :

 

(-infinity, -2)   or  ( -2, 3/2)  or  ( 3/2, infinity)

Let's pick a test point in the middle interval, say, 0  and put it into the function

2(0)^2 + 0  -  6   =  -2.....so...in the interval  ( -2, 3/2)....the  bottom  function is negative

You can check and  see that the other two intervals make the function positive

 

So.....the  x values that  make  the  given  function ≥ 0   are

 

(-infinity, -2)   U  ( 3/2, infinity)

 

See the graph that confirms this, here :

 

https://www.desmos.com/calculator/ckhao5mwig

 

 

cool cool cool

 Jun 29, 2018

17 Online Users

avatar
avatar