+0  
 
+1
51
3
avatar+5 

Find $\left(\frac{1+i}{\sqrt{2}}\right)^{46}$. Any help is appreciated! Thanks!

AwesomeDude86  Aug 29, 2018
 #1
avatar+599 
+1

In \(\left(\frac{1+i}{\sqrt{2}}\right)^{46}\) , we can apply exponent rule, \((\frac{a}{b})^c=\frac{a^c}{b^c}\) . If we do it here, we will get: \(\frac{(1+i)^46}{2^{23}}\) .\(\)

mathtoo  Aug 30, 2018
 #2
avatar+7266 
+2

Find   \(\left(\frac{1+i}{\sqrt{2}}\right)^{46}\) .

 

Let's convert  1 + i  to polar form so we can use de Moivre's Theorem.

 

\(1+i=\sqrt2(\cos\frac{\pi}4+i\sin\frac{\pi}4)\)

 

Now lets raise both sides of that equation to the power of  46 .

 

\((1+i)^{46}=[\sqrt2(\cos\frac{\pi}4+i\sin\frac{\pi}4)]^{46}\\~\\ (1+i)^{46}=(\sqrt2\,)^{46}(\cos\frac{\pi}4+i\sin\frac{\pi}4)^{46}\)

 

And divide both sides by  \((\sqrt2\,)^{46}\)

 

\(\frac{(1+i)^{46}}{(\sqrt2\,)^{46}}=(\cos\frac{\pi}4+i\sin\frac{\pi}4)^{46}\\~\\ \left(\frac{1+i}{\sqrt{2}}\right)^{46}=(\cos\frac{\pi}4+i\sin\frac{\pi}4)^{46}\)

 

De Moivre's Theorem says....

 

\((\cos(x)+i\sin(x))^n=\cos(nx)+i\sin(nx)\)    So....

 

\((\cos\frac{\pi}4+i\sin\frac{\pi}4)^{46}=\cos(\frac{46\pi}{4})+i\sin(\frac{46\pi}{4})\\~\\ \left(\frac{1+i}{\sqrt2}\right)^{46}=\cos(\frac{46\pi}{4})+i\sin(\frac{46\pi}{4})\\~\\ \left(\frac{1+i}{\sqrt2}\right)^{46}=\cos(\frac{23\pi}{2})+i\sin(\frac{23\pi}{2}) \)

 

Now let's find a reference angle that is coterminal with  \(\frac{23\pi}{2}\)  by subtracting  \(2\pi\)  five times.

 

\(\frac{23\pi}{2}-2\pi-2\pi-2\pi-2\pi-2\pi\,=\,\frac{23\pi}{2}-10\pi\,=\,\frac{23\pi}{2}-\frac{20\pi}{2}\,=\,\frac{3\pi}{2}\)

 

So....

 

\(\left(\frac{1+i}{\sqrt2}\right)^{46}=\cos(\frac{3\pi}{2})+i\sin(\frac{3\pi}{2})\\~\\ \left(\frac{1+i}{\sqrt2}\right)^{46}=0+i(-1)\\~\\ \left(\frac{1+i}{\sqrt2}\right)^{46}=-i \)

hectictar  Aug 30, 2018
 #3
avatar+19992 
+3

Find

\(\large{\left(\dfrac{1+i}{\sqrt{2}}\right)^{46}}\)

\left(\frac{1+i}{\sqrt{2}}\right)^{46}.

 

\(\begin{array}{|rcll|} \hline && \left(\dfrac{1+i}{\sqrt{2}}\right)^{46} \\\\ &=& \dfrac{ \left(1+i \right)^{46} }{ \left(\sqrt{2} \right)^{46} } \\\\ &=& \dfrac{ \left( \left(1+i \right)^{2}\right)^{23} }{ 2^{\frac{46}{2}} } \quad & | \quad \left(1+i \right)^{2} = 2i \\\\ &=& \dfrac{ \left( 2i \right)^{23} } { 2^{23} } \\\\ &=& \dfrac{ 2^{23}i^{23} } { 2^{23} } \\\\ &=& i^{23} \\\\ &=& \left(i^{2}\right)^{11}i \quad & | \quad i^2 = -1 \\\\ &=& \left(-1 \right)^{11}i \\\\ &\mathbf{=}& \mathbf{-i} \\ \hline \end{array}\)

 

laugh

heureka  Aug 30, 2018

8 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.