We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+3
340
3
avatar+20 

Find $\left(\frac{1+i}{\sqrt{2}}\right)^{46}$. Any help is appreciated! Thanks!

 Aug 29, 2018
 #1
avatar+814 
+1

In \(\left(\frac{1+i}{\sqrt{2}}\right)^{46}\) , we can apply exponent rule, \((\frac{a}{b})^c=\frac{a^c}{b^c}\) . If we do it here, we will get: \(\frac{(1+i)^46}{2^{23}}\) .\(\)

.
 Aug 30, 2018
 #2
avatar+7603 
+2

Find   \(\left(\frac{1+i}{\sqrt{2}}\right)^{46}\) .

 

Let's convert  1 + i  to polar form so we can use de Moivre's Theorem.

 

\(1+i=\sqrt2(\cos\frac{\pi}4+i\sin\frac{\pi}4)\)

 

Now lets raise both sides of that equation to the power of  46 .

 

\((1+i)^{46}=[\sqrt2(\cos\frac{\pi}4+i\sin\frac{\pi}4)]^{46}\\~\\ (1+i)^{46}=(\sqrt2\,)^{46}(\cos\frac{\pi}4+i\sin\frac{\pi}4)^{46}\)

 

And divide both sides by  \((\sqrt2\,)^{46}\)

 

\(\frac{(1+i)^{46}}{(\sqrt2\,)^{46}}=(\cos\frac{\pi}4+i\sin\frac{\pi}4)^{46}\\~\\ \left(\frac{1+i}{\sqrt{2}}\right)^{46}=(\cos\frac{\pi}4+i\sin\frac{\pi}4)^{46}\)

 

De Moivre's Theorem says....

 

\((\cos(x)+i\sin(x))^n=\cos(nx)+i\sin(nx)\)    So....

 

\((\cos\frac{\pi}4+i\sin\frac{\pi}4)^{46}=\cos(\frac{46\pi}{4})+i\sin(\frac{46\pi}{4})\\~\\ \left(\frac{1+i}{\sqrt2}\right)^{46}=\cos(\frac{46\pi}{4})+i\sin(\frac{46\pi}{4})\\~\\ \left(\frac{1+i}{\sqrt2}\right)^{46}=\cos(\frac{23\pi}{2})+i\sin(\frac{23\pi}{2}) \)

 

Now let's find a reference angle that is coterminal with  \(\frac{23\pi}{2}\)  by subtracting  \(2\pi\)  five times.

 

\(\frac{23\pi}{2}-2\pi-2\pi-2\pi-2\pi-2\pi\,=\,\frac{23\pi}{2}-10\pi\,=\,\frac{23\pi}{2}-\frac{20\pi}{2}\,=\,\frac{3\pi}{2}\)

 

So....

 

\(\left(\frac{1+i}{\sqrt2}\right)^{46}=\cos(\frac{3\pi}{2})+i\sin(\frac{3\pi}{2})\\~\\ \left(\frac{1+i}{\sqrt2}\right)^{46}=0+i(-1)\\~\\ \left(\frac{1+i}{\sqrt2}\right)^{46}=-i \)

.
 Aug 30, 2018
 #3
avatar+22180 
+6

Find

\(\large{\left(\dfrac{1+i}{\sqrt{2}}\right)^{46}}\)

\left(\frac{1+i}{\sqrt{2}}\right)^{46}.

 

\(\begin{array}{|rcll|} \hline && \left(\dfrac{1+i}{\sqrt{2}}\right)^{46} \\\\ &=& \dfrac{ \left(1+i \right)^{46} }{ \left(\sqrt{2} \right)^{46} } \\\\ &=& \dfrac{ \left( \left(1+i \right)^{2}\right)^{23} }{ 2^{\frac{46}{2}} } \quad & | \quad \left(1+i \right)^{2} = 2i \\\\ &=& \dfrac{ \left( 2i \right)^{23} } { 2^{23} } \\\\ &=& \dfrac{ 2^{23}i^{23} } { 2^{23} } \\\\ &=& i^{23} \\\\ &=& \left(i^{2}\right)^{11}i \quad & | \quad i^2 = -1 \\\\ &=& \left(-1 \right)^{11}i \\\\ &\mathbf{=}& \mathbf{-i} \\ \hline \end{array}\)

 

laugh

 Aug 30, 2018

10 Online Users