+0  
 
0
43
1
avatar+15 

We have triangle  ABC$ where $AB = AC$ and $AD$ is an altitude. Meanwhile, $E$ is a point on $AC$ such that $AB \parallel DE.$ If $BC = 12$ and the area of $\triangle ABC$ is $180,$ what is the area of $ABDE$?

newuseeer  Aug 16, 2018
 #1
avatar+88775 
+1

Triangle  ABC  is isosceles with  AB  = AC

AD  is an altitude which is also  a median to BC...so  DC  = DB  = 6

And  DE is parallel to AB

 

So  angle EDC  = angle ABC

And angle ACB  = angle ECD

So...by AA congruency, ΔABC  ~ Δ  EDC

 

Since the area  of  Δ  ABC = 180....we can  find the altitude AD thusly

 

180  = (1/2) (AC) (AD)

180  = (1/2) (12) (AD)

180 = 6  (AD)   divide each side by 6

30  = AD

 

Now  Δ ABC  and Δ EDC  are similar.... and BC  = 2DC

So......the altitude of Δ ABC  is also twice that of  Δ EDC...so  the altitude of Δ  EDC   = 15

And the area of Δ EDC  = (1/2)DC( altitude of EDC)  = (1/2)(6)(15)  = .45

 

So...the area  of ABDE  = area of  Δ ABC  -  area  of Δ  EDC  =   180  - 45  =  135  units^2

 

 

cool cool cool

CPhill  Aug 16, 2018
edited by CPhill  Aug 16, 2018

36 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.