+0  
 
0
80
4
avatar

Without using a calculator find the greatest prime factor of \(15^6 - 7^6\)

Guest Feb 16, 2018
Sort: 

4+0 Answers

 #1
avatar
0

[7 + b]^6 - 7^6

b^6 + 42 b^5 + 735 b^4 + 6860 b^3 + 36015 b^2 + 100842 b + 117649 -7^6

Sub 8 for b

262,144 + 1,376,256 + 3,010,560 + 3,512,320 + 2,304,960 + 806,736

11,272,976 = 2^4 * 11 * 13^2 * 379

Guest Feb 16, 2018
edited by Guest  Feb 16, 2018
 #2
avatar+86649 
+1

15^6  - 7^6  =  {factor using  difference/sum of cubes}

 

(15 - 7)(15^2 + 15*7 + 7^2)(15 + 7) (15^2 - 15*7 + 49)  =

 

(15 - 7) (15+7)(15^2 - 15*7 + 49)(15^2 + 15*7 + 49) =

 

  (8)(22)(169)(379)

 

(2^3)(2*11)(13* 13)(379)

 

(2^4)(11)(13^2)(379)    is the largest prime factor

 

 

cool cool cool

CPhill  Feb 16, 2018
edited by CPhill  Feb 16, 2018
edited by CPhill  Feb 16, 2018
edited by CPhill  Feb 16, 2018
 #3
avatar
0

A typo of 139 should be 169.

Guest Feb 16, 2018
 #4
avatar+86649 
0

Thanks, guest.....correction made  !!!

 

 

cool cool cool

CPhill  Feb 16, 2018

13 Online Users

avatar

New Privacy Policy (May 2018)

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see cookie policy and privacy policy.