+0  
 
0
103
4
avatar

Without using a calculator find the greatest prime factor of \(15^6 - 7^6\)

Guest Feb 16, 2018
 #1
avatar
0

[7 + b]^6 - 7^6

b^6 + 42 b^5 + 735 b^4 + 6860 b^3 + 36015 b^2 + 100842 b + 117649 -7^6

Sub 8 for b

262,144 + 1,376,256 + 3,010,560 + 3,512,320 + 2,304,960 + 806,736

11,272,976 = 2^4 * 11 * 13^2 * 379

Guest Feb 16, 2018
edited by Guest  Feb 16, 2018
 #2
avatar+87293 
+1

15^6  - 7^6  =  {factor using  difference/sum of cubes}

 

(15 - 7)(15^2 + 15*7 + 7^2)(15 + 7) (15^2 - 15*7 + 49)  =

 

(15 - 7) (15+7)(15^2 - 15*7 + 49)(15^2 + 15*7 + 49) =

 

  (8)(22)(169)(379)

 

(2^3)(2*11)(13* 13)(379)

 

(2^4)(11)(13^2)(379)    is the largest prime factor

 

 

cool cool cool

CPhill  Feb 16, 2018
edited by CPhill  Feb 16, 2018
edited by CPhill  Feb 16, 2018
edited by CPhill  Feb 16, 2018
 #3
avatar
0

A typo of 139 should be 169.

Guest Feb 16, 2018
 #4
avatar+87293 
0

Thanks, guest.....correction made  !!!

 

 

cool cool cool

CPhill  Feb 16, 2018

12 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.