We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
83
1
avatar

\(\text{Let $p(x)=\sqrt{-x}$, and $q(x)=8x^2+10x-3$. The domain of $p(q(x))$ can be written in the form $a\le x \le b$. Find $b-a$. }\)

 Jul 18, 2019
 #1
avatar+103122 
+2

p (q(x))  =  √ [ - ( 8x^2 + 10x - 3) ]

 

For the domain to be defined, - (8x^2 + 10x - 3 )  must be ≥ 0

 

So

 

-(8x^2 + 10x - 3)  ≥ 0

 

-8x^2 - 10x + 3 ≥ 0        

 

To solve this, set this = 0    and solve for x

 

-8x^2 - 10x + 3  = 0          multiply through by -1

 

8x^2 + 10x - 3  = 0           factor

 

(4x - 1) ( 2x + 3)   = 0

 

Set each factor to  0  and solve for x

 

4x - 1  = 0           and        2x + 3  = 0

4x  = 1                               2x   = - 3

x = 1/4                                 x  = - 3/2

 

The solution will either come from  x  = (-inf, -3/2] U [1/4, infinity)  or   x  = [-3/2, 1/4]

Testing a point in the second interval  [ I'll pick x = 0 ].....we can see that

 

√ [ - ( 8(0)^2 + 10(0) - 3) ]   =   √ [ - ( -3) ]  =  √ 3     gives us a real number

 

So....the interval that solves this is   [ -3/2, 1/4 ]

 

So  b  - a  =    1/4  - (-3/2)  =  (1/4) - (-6/4)  =  7/4

 

Here's a graph to  show that the solution interval is correct : 

https://www.desmos.com/calculator/6jhmgavfr0

 

 

cool cool cool

 Jul 18, 2019

16 Online Users

avatar
avatar
avatar
avatar