We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
39
1
avatar+248 

Patricia is trying to solve the following equation by completing the square: 25x^2+20x-10 = 0. She successfully rewrites the above equation in the following form: (ax+b)^2 = c, where a,b  and c are integers and a>0. What is the value of a+b+c?

 

Thank you :)

 Jun 8, 2019

Best Answer 

 #1
avatar+8215 
+2

25x2 + 20x - 10  =  0

                                       Rewrite the equation as...

(5x)2 + 4(5x) - 10  =  0

                                       To make it clearer, let  u  =  5x   and then substitute  u  in for  5x

u2 + 4u - 10  =  0

                                       Add  10  to both sides of the equation.

u2 + 4u  =  10

                                       Add  4  to both sides of the equation to complete the square on the left side.

u2 + 4u + 4  =  14

                                       Factor the perfect square trinomial on the left side.

(u + 2)2  =  14

                                       And since  u  =  5x  we can substitute  5x  in for  u

(5x + 2)2  =  14

 

Now the equation is in the form  (ax + b)2  =  c   where  a,  b,  and  c  are integers and  a > 0 .

 

a + b + c  =  5 + 2 + 14  =  21

 Jun 8, 2019
 #1
avatar+8215 
+2
Best Answer

25x2 + 20x - 10  =  0

                                       Rewrite the equation as...

(5x)2 + 4(5x) - 10  =  0

                                       To make it clearer, let  u  =  5x   and then substitute  u  in for  5x

u2 + 4u - 10  =  0

                                       Add  10  to both sides of the equation.

u2 + 4u  =  10

                                       Add  4  to both sides of the equation to complete the square on the left side.

u2 + 4u + 4  =  14

                                       Factor the perfect square trinomial on the left side.

(u + 2)2  =  14

                                       And since  u  =  5x  we can substitute  5x  in for  u

(5x + 2)2  =  14

 

Now the equation is in the form  (ax + b)2  =  c   where  a,  b,  and  c  are integers and  a > 0 .

 

a + b + c  =  5 + 2 + 14  =  21

hectictar Jun 8, 2019

9 Online Users

avatar
avatar