We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
177
1
avatar

Find all complex numbers  such that  z^2=2i

Write your solutions in a+bi form, separated by commas. So, "1+2i, 3-i" is an acceptable answer format, but "2i+1; -i+3" is not. (Don't include quotes in your answer.)

 

 Aug 16, 2018

Best Answer 

 #1
avatar+22152 
+2

Find all complex numbers  such that  z^2=2i

Write your solutions in a+bi form, separated by commas. So, "1+2i, 3-i" is an acceptable answer

 

\(\begin{array}{|lrcll|} \hline & (a+bi)^2 &=& a^2 + 2abi+b^2i^2 \quad | \quad i^2 = -1 \\ & (a+bi)^2 &=& a^2 + 2abi -b^2 \\ & (a+bi)^2 &=& \underbrace{a^2-b^2}_{=0} + \underbrace{2abi}_{=2i} \quad | \quad \text{compare with } 2i \\\\ 1. & a^2-b^2 &=& 0 \\ & a^2 &=& b^2 \\ & \mathbf{a} & \mathbf{=}& \mathbf{b} \\\\ 2. & 2abi &=& 2i \quad | \quad : 2i \\ &\mathbf{ ab } & \mathbf{=}& \mathbf{1 } \quad | \quad a=b \\ &a^2 & = & 1 \\ &a & = & \pm 1 \\ \\ &b &=& a \\ & b &=& \pm 1 \\\\ & && & \mathbf{ab = 1\ ?} \\ & a &=& 1 \quad \text{ and } \quad b = 1 & ab = 1\cdot 1 = 1\ \checkmark \\ \text{or}& a &=& -1 \quad \text{ and } \quad b = -1 & ab = (-1)\cdot (-1) = 1\ \checkmark \\ \text{else}& a &=& -1 \quad \text{ and } \quad b = 1 & ab = (-1)\cdot 1 = -1\ \text{ no solution} \\ & a &=& 1 \quad \text{ and } \quad b = -1 & ab = 1\cdot (-1) = -1\ \text{ no solution} \\ \hline \end{array}\)

 

The answer is \(\mathbf{"1+i, -1-i"}\)

 

laugh

 Aug 16, 2018
edited by heureka  Aug 16, 2018
 #1
avatar+22152 
+2
Best Answer

Find all complex numbers  such that  z^2=2i

Write your solutions in a+bi form, separated by commas. So, "1+2i, 3-i" is an acceptable answer

 

\(\begin{array}{|lrcll|} \hline & (a+bi)^2 &=& a^2 + 2abi+b^2i^2 \quad | \quad i^2 = -1 \\ & (a+bi)^2 &=& a^2 + 2abi -b^2 \\ & (a+bi)^2 &=& \underbrace{a^2-b^2}_{=0} + \underbrace{2abi}_{=2i} \quad | \quad \text{compare with } 2i \\\\ 1. & a^2-b^2 &=& 0 \\ & a^2 &=& b^2 \\ & \mathbf{a} & \mathbf{=}& \mathbf{b} \\\\ 2. & 2abi &=& 2i \quad | \quad : 2i \\ &\mathbf{ ab } & \mathbf{=}& \mathbf{1 } \quad | \quad a=b \\ &a^2 & = & 1 \\ &a & = & \pm 1 \\ \\ &b &=& a \\ & b &=& \pm 1 \\\\ & && & \mathbf{ab = 1\ ?} \\ & a &=& 1 \quad \text{ and } \quad b = 1 & ab = 1\cdot 1 = 1\ \checkmark \\ \text{or}& a &=& -1 \quad \text{ and } \quad b = -1 & ab = (-1)\cdot (-1) = 1\ \checkmark \\ \text{else}& a &=& -1 \quad \text{ and } \quad b = 1 & ab = (-1)\cdot 1 = -1\ \text{ no solution} \\ & a &=& 1 \quad \text{ and } \quad b = -1 & ab = 1\cdot (-1) = -1\ \text{ no solution} \\ \hline \end{array}\)

 

The answer is \(\mathbf{"1+i, -1-i"}\)

 

laugh

heureka Aug 16, 2018
edited by heureka  Aug 16, 2018

9 Online Users