We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
74
2
avatar+1040 

Consider the given functions:

 \(\begin{array}{ccc} f(x) & = & 5x^2 - \frac{1}{x}+ 3\\ g(x) & = & x^2-k \end{array}\)

if \(f(2) - g(2) = 2\), what is the value of k?

 Aug 8, 2019

Best Answer 

 #1
avatar+5788 
+2

\(f(2) = 5(2^2) - \dfrac 1 2 + 3 = \dfrac{45}{2}\\ g(2) = 2^2 - k = 4-k\\ f(2)-g(2)=2\\ \dfrac{45}{2}-(4-k) = 2\\ \dfrac{37}{2} + k = 2\\ k = -\dfrac{33}{2}\)

.
 Aug 9, 2019
 #1
avatar+5788 
+2
Best Answer

\(f(2) = 5(2^2) - \dfrac 1 2 + 3 = \dfrac{45}{2}\\ g(2) = 2^2 - k = 4-k\\ f(2)-g(2)=2\\ \dfrac{45}{2}-(4-k) = 2\\ \dfrac{37}{2} + k = 2\\ k = -\dfrac{33}{2}\)

Rom Aug 9, 2019
 #2
avatar+1040 
0

thanks rom!

 Aug 11, 2019

30 Online Users

avatar
avatar
avatar
avatar