We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
485
5
avatar+1193 

If the roots of the quadratic equation $\frac12x^2+99x+c=0$ are $x=-99+\sqrt{8001}$ and $x=-99-\sqrt{8001}$, then what is the value of $c$?

 Jun 14, 2018
 #1
avatar
+1

Can somebody translate this into proper LaTex?

 Jun 14, 2018
 #2
avatar+117 
+1

If the roots of the quadratic equation \(12x^2+99x+c=0\) are \(x = -99+\sqrt{8001}\) and \(x=-99-\sqrt{8001}\), then what is the value of \(c\)?

ChowMein  Jun 15, 2018
 #3
avatar+101768 
+1

\(12x^2+99x+c=0\)

 

\(x = -99\pm\sqrt{8001}\)

 

I think you have written the question wrong. I think both those answers are suppposed to be over 24.

 Jun 15, 2018
 #4
avatar+985 
+2

If the roots of the quadratic equation \(\frac12x^2+99x+c=0 \) are \(x=-99+\sqrt{8001}\) and \(x=-99-\sqrt{8001},\) then what is the value of \(c\)?

 

In the factored form of a quadratic equation: \((x-b)(x-c)=0\) The two solutions are \(x_1=b;x_2=c\)
\([x-(-99-\sqrt{8001})][x-(-99+\sqrt{8001})]=0\) We used the logic above the reach this conclusion. 
\((x+99+\sqrt{8001})(x+99-\sqrt{8001})=0\) Simplifying
\(x^2+198x+1800=0\) Finalizing
\(\frac12x^2+99x+900=0 \) Dividing by 2 to get the form the question presents

 

\(c=\boxed{900}\)

 

I hope this helped,

 

Gavin

 Jun 15, 2018
 #5
avatar+101768 
0

ahhh 

1/2    not   12

We have another forensic mathematician here. :)

Thanks Gavin :)

Melody  Jun 15, 2018

17 Online Users

avatar
avatar
avatar