+0  
 
0
53
2
avatar

Let a and b be positive real numbers such that a^b = b^a, b = 9a, Then can be expressed in the form sqrt(n,m) where m and are positive integers

and n is as small as possible. Find m + n

 

 

I bolded the important parts to the problem, Please help :)

 Apr 6, 2020
 #1
avatar+24972 
+2

Let \(a\) and \(b\) be positive real numbers such that \(a^b = b^a,\ b = 9a\),
Then \(a\) can be expressed in the form \(sqrt(n,m)\) where \(m\) and \(n\) are positive integers
and \(n\) is as small as possible.

Find \(m + n\)

 

\(\begin{array}{|rcll|} \hline \mathbf{a^b} &=& \mathbf{b^a} \quad | \quad \mathbf{b = 9a} \\\\ a^{9a} &=& (9a)^a \\\\ a^{9a*\frac{1}{a}} &=& \left(9a\right)^{a*\frac{1}{a}} \\\\ a^{9} &=& 9a \quad | \quad *(a^{-1}) \\\\ a^{9}a^{-1} &=& 9a^1a^{-1} \\\\ a^{9-1} &=& 9a^{1-1} \\\\ a^{8} &=& 9a^0 \quad | \quad a^0 = 1 \\\\ a^{8} &=& 9 \\\\ a^{8*\frac{1}{8}} &=& 9^{\frac{1}{8}} \\\\ a &=& 9^{\frac{1}{8}} \\\\ a &=& (3^2)^{\frac{1}{8}} \\\\ a &=& 3^{2*\frac{1}{8}} \\\\ a &=& 3^{\frac{2}{8}} \\\\ a &=& 3^{\frac{1}{4}} \\\\ \mathbf{a} &=& \mathbf{\sqrt[4]{3}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline m+n &=& 3+4 \\ \mathbf{m+n} &=& \mathbf{7} \\ \hline \end{array}\)

 

laugh

 Apr 6, 2020
 #2
avatar
+1

Thank you so much for explaining this to me!

 Apr 6, 2020

16 Online Users

avatar
avatar
avatar
avatar
avatar