+0  
 
0
37
1
avatar

Some perfect squares (such as 121) have a digit sum  that is equal to the square of the digit sum of their square root 
\( $(\sqrt{121}=11$, and $(1 + 1)^2 = 4)$. \)

 

What is the smallest perfect square greater than 100 that does not have this property?

 Jun 6, 2022
edited by Guest  Jun 6, 2022
edited by Guest  Jun 6, 2022
 #1
avatar+123413 
+1

sqrt (144)  = 12    (1 + 2)^2     = 9  = 1 + 4 + 4

sqrt (169) = 13     ( 1 + 3)^2  = 16  =  1 + 6 + 9

sqrt ( 196)  = 14    ( 1 + 4)^2 =  25  but 1 + 9 + 6  =   16

 

 

cool cool cool

 Jun 6, 2022

19 Online Users

avatar
avatar
avatar
avatar
avatar