+0  
 
0
1850
1
avatar+5265 

The vertices of square JKLM are J(-2, 4), K(-3,-1), L(2,-2), and M(3,3) Find each of the following to show that the diagonals of square JKLM are congruent perpendicular bisectors to each other.

 

JL=_____          KM=_____

slope of JL=_____     Slope of KM______

midpoint of JL=(_____,_____)    Midpoint of KM=(______,______)

 

 

Please help me... :(

 

GEOMETRY IS ANNOYING, but I love math... HOW IS THAT POSSIBLE?!?!?!?!?!

 Feb 4, 2016

Best Answer 

 #1
avatar+129850 
+10

JL = sqrt[ (-2-2)^2  + (-4-2)^2 ]  =  sqrt( 16 + 36)  = sqrt(52)

KM = sqrt [ (-3-3)^2 + (-1-3)^2 ]  = sqrt (36 + 16)  = sqrt(52)

 

Slope of JL   =  [-2 - 4] / [2 - (-2)] = -6/4  = -3/2

Slope of KM  = [3 - (-1)] / [3- (-3) ] =  4/6  =  2/3

 

[This proves that JL and KM are perpendicular]

 

J(-2, 4), K(-3,-1), L(2,-2), and M(3,3)

 

Midpoint of JL  = [ ( -2 + 2)/2 , (-2 + 4)/2 ]  =  [ 0 , 1]

Midpoint of  KM  = [ (3 + -3)/2, (3 + -1)/2 ]   = [0, 1]

 

So.......JL and KM  have the same length, reciprocal slopes and  the same mid-point.....so they are perpendicular bisectors.....

 

 

cool cool cool

 Feb 4, 2016
 #1
avatar+129850 
+10
Best Answer

JL = sqrt[ (-2-2)^2  + (-4-2)^2 ]  =  sqrt( 16 + 36)  = sqrt(52)

KM = sqrt [ (-3-3)^2 + (-1-3)^2 ]  = sqrt (36 + 16)  = sqrt(52)

 

Slope of JL   =  [-2 - 4] / [2 - (-2)] = -6/4  = -3/2

Slope of KM  = [3 - (-1)] / [3- (-3) ] =  4/6  =  2/3

 

[This proves that JL and KM are perpendicular]

 

J(-2, 4), K(-3,-1), L(2,-2), and M(3,3)

 

Midpoint of JL  = [ ( -2 + 2)/2 , (-2 + 4)/2 ]  =  [ 0 , 1]

Midpoint of  KM  = [ (3 + -3)/2, (3 + -1)/2 ]   = [0, 1]

 

So.......JL and KM  have the same length, reciprocal slopes and  the same mid-point.....so they are perpendicular bisectors.....

 

 

cool cool cool

CPhill Feb 4, 2016

1 Online Users