We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
1
41
1
avatar

Let $z$ be a complex number such that z^2 + |z|^2 = 3 - 5i.Find |z|^2.

 Dec 2, 2019
 #1
avatar+105989 
+1

Let $z$ be a complex number such that z^2 + |z|^2 = 3 - 5i.Find |z|^2.


\(Let \;\;z=a+bi   \\ z^2= a^2-b^2+2abi\\ |z|^2=a^2+b^2\\ so a^2-b^2+2abi + a^2+b^2 = 3-5i \\ 2a^2+2abi  = 3-5i \\ 2a^2=3 \qquad  2ab=-5\\ a^2=1.5 \qquad 2a^2b^2=25\\ \qquad \qquad \quad 2*1.5b^2=25\\ \qquad \qquad \quad b^2=\frac{25}{3}\\ so\\ |z|^2=\frac{3}{2}+\frac{25}{3}=\frac{106}{6}=17\frac{2}{3}\)

 

 

As always, you must check this answer.

 Dec 2, 2019

23 Online Users

avatar
avatar
avatar