We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
75
1
avatar

The distance between the two intersections of \(x=y^4\) and \(x+y^2=1\) is \(\sqrt{u+v\sqrt5}\). Find the ordered pair, (u, v).

 Feb 15, 2019
 #1
avatar+101431 
+1

x = y^4      (1)      and     x + y^2 = 1      (2)

 

Sub   (1)  into (2)   and we have that

 

 

y^4 + y^2 = 1         

 

Let  y^2  =  a      and we have

 

a^2 + a   =   1        complete the square on a

 

a^2 + a + 1/4   =  1 + 1/4       factor the left....simplify the right

 

(a + 1/2)^2  =  5/4           take both roots

 

a + 1/2   =   ±√5  /  2       subtract   1/2 from both sides

 

a =   ( - 1 ±√5 ) / 2

 

Since  y^2  must be positive, then  a  must be   ( √ 5 - 1 ) / 2    =  y^2      (3)

 

Using   x + y^2 = 1

 

x =  1 - y^2

 

x = 1 -  [  ( √ 5 - 1 ) / 2   ]  =    ( 3 - √ 5 ) / 2

 

These curves intersect at the same x values

 

So...the distance between the y values is the distance between the intersection points 

 

So.....using (3)

 

y =  √  [ ( √ 5 - 1 ) / 2 ]       or y =  - √ [ ( √ 5 - 1 ) / 2 ] 

 

So... the distance between these points is just

 

√  [ ( √ 5 - 1 ) / 2 ]   -  [  - √ [ ( √ 5 - 1 ) / 2 ]  ]  =

 

2 √  [ ( √ 5 - 1 ) / 2 ]   =

 

√ [ 4 ( √5 - 1 ) / 2 ]  =

 

√ [ 2√ 5 - 2 ]  =

 

√ [ - 2 + 2√ 5 ]   ⇒  (u, v)   =  (-2, 2)

 

 

cool cool cool

 Feb 15, 2019

4 Online Users