We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
65
1
avatar+420 

What is the sum of the final three digits of the integer representation of 5^100?

 Jul 6, 2019
 #1
avatar+102320 
+1

Note the pattern 

5^1  = 5

5^2 = 25

5^3 = 125

5^4  = 625

5^5 = 3125

5^6 = 15625

5^7 = 78125

5^8 = 390625

 

So...it appears that  for n ≥ 2,   5^(2n)  will end in ....625

 

So....5^(2 * 50)   = 5^100   ends in 625

 

And the sum is  6 + 2 + 5  =   13

 

 

cool cool cool

 Jul 6, 2019

4 Online Users

avatar