We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
20
1
avatar

One ordered pair (a,b) satisfies the two equations $ab^4 = 12$ and $a^5 b^5 = 7776$. What is the value of $a$ in this ordered pair? Note: You can enter radicals with the \sqrt command. For example, \sqrt[3]{5} gives you $\sqrt[3]{5}$. Therefore, you can enter $2\sqrt[4]{6}$ as "2\sqrt[4]{6}".

 

Its not   \sqrt[3]{4}

 May 10, 2019
 #1
avatar+100519 
+1

ab^4  = 12           a^5b^5  = 7776

 

Using the first equation    a =  12/ b^4         sub this into the second equation

 

(12/b^4)^5 * b^5  = 7776

 

248832 * b^5 / b^20  = 7776

 

248832 / b^15  = 7776

 

b^15 =   248832 / 7776 

 

b^15  =  32      

 

b^15  =  2^5    

 

b =  (2^5)^(1/15)   =  ∛2   

 

And a   =  12 / (2^1/3)^4      =  12 / (2^4/3)  =  12 / (2 ∛2)   =   6/∛2  =  3*(2)^(2/3)

 

So....assuming real solutions....a  = 3*(2)^(2/3)

 

 

cool cool cool

 May 10, 2019

11 Online Users

avatar