We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
54
1
avatar

The expression a(b - c)^3 + b(c - a)^3 + c(a - b)^3 can be factored into the form (a - b)(b - c)(c - a) p(a,b,c), for some polynomial p(a,b,c). Find p(a,b,c)

 Aug 28, 2019

Best Answer 

 #1
avatar+23086 
+3

The expression \(a(b - c)^3 + b(c - a)^3 + c(a - b)^3\) can be factored into the form

\( (a - b)(b - c)(c - a) p(a,b,c)\), for some polynomial \(p(a,b,c)\)

Find p(a,b,c)

 

\(\begin{array}{|rcll|} \hline a(b - c)^3 + b(c - a)^3 + c(a - b)^3 &=& -a^3b + a^3 c + a b^3 - a c^3 - b^3 c + b c^3 \\ (a - b)(b - c)(c - a) &=& -a^2b + a^2 c + a b^2 - a c^2 - b^2 c + b c^2 \\ \hline -a^3b + a^3 c + a b^3 - a c^3 - b^3 c + b c^3 &=& (-a^2b + a^2 c + a b^2 - a c^2 - b^2 c + b c^2)(a+b+c) \\\\ &=& -a^3b + a^3 c + a b^3 - a c^3 - b^3 c + b c^3 \\ && +a^2b^2-a^2b^2 \\ && +a^2c^2-a^2c^2 \\ && +b^2c^2-b^2c^2 \\ && +a^2bc-a^2bc \\ && +b^2ac-b^2ac \\ &&+c^2ab-c^2ab \\\\ \mathbf{a(b - c)^3 + b(c - a)^3 + c(a - b)^3} &=&\mathbf{ (a - b)(b - c)(c - a)(a+b+c) } \\ \hline \end{array}\)

 

\(\mathbf{p(a,b,c) = a+b+c} \)

 

laugh

 Aug 29, 2019
edited by heureka  Aug 29, 2019
 #1
avatar+23086 
+3
Best Answer

The expression \(a(b - c)^3 + b(c - a)^3 + c(a - b)^3\) can be factored into the form

\( (a - b)(b - c)(c - a) p(a,b,c)\), for some polynomial \(p(a,b,c)\)

Find p(a,b,c)

 

\(\begin{array}{|rcll|} \hline a(b - c)^3 + b(c - a)^3 + c(a - b)^3 &=& -a^3b + a^3 c + a b^3 - a c^3 - b^3 c + b c^3 \\ (a - b)(b - c)(c - a) &=& -a^2b + a^2 c + a b^2 - a c^2 - b^2 c + b c^2 \\ \hline -a^3b + a^3 c + a b^3 - a c^3 - b^3 c + b c^3 &=& (-a^2b + a^2 c + a b^2 - a c^2 - b^2 c + b c^2)(a+b+c) \\\\ &=& -a^3b + a^3 c + a b^3 - a c^3 - b^3 c + b c^3 \\ && +a^2b^2-a^2b^2 \\ && +a^2c^2-a^2c^2 \\ && +b^2c^2-b^2c^2 \\ && +a^2bc-a^2bc \\ && +b^2ac-b^2ac \\ &&+c^2ab-c^2ab \\\\ \mathbf{a(b - c)^3 + b(c - a)^3 + c(a - b)^3} &=&\mathbf{ (a - b)(b - c)(c - a)(a+b+c) } \\ \hline \end{array}\)

 

\(\mathbf{p(a,b,c) = a+b+c} \)

 

laugh

heureka Aug 29, 2019
edited by heureka  Aug 29, 2019

21 Online Users

avatar