+0  
 
0
184
1
avatar+836 

Show that the product of \(a\sqrt{b}+c\sqrt{d}\) and \(a\sqrt{b}-c\sqrt{d}\) is always rational if \(a,b,c\) and \(d\) are rational.

 May 10, 2018
 #1
avatar+7347 
+1
___ The product of   a√b + c√d   and   a√b - c√d
=              
  ( a√b + c√d )( a√b - c√d )
=   ___   ___   ___  
  ( a√b )( a√b ) + ( a√b )( -c√d ) + ( c√d )( a√b ) + ( c√d)(-c√d )
=              
  a2√b2 - ac√b√d + ac√b√d - c2√d2
=              
  a2√b2  -  c2√d2
=              
 

a2b  -  c2d

 

And    a2b  -  c2d   is always rational if  a ,  b ,  c , and  d  are rational.

 May 10, 2018

21 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.