+0  
 
0
126
1
avatar+553 

Show that the product of \(a\sqrt{b}+c\sqrt{d}\) and \(a\sqrt{b}-c\sqrt{d}\) is always rational if \(a,b,c\) and \(d\) are rational.

ant101  May 10, 2018
 #1
avatar+7266 
+1
___ The product of   a√b + c√d   and   a√b - c√d
=              
  ( a√b + c√d )( a√b - c√d )
=   ___   ___   ___  
  ( a√b )( a√b ) + ( a√b )( -c√d ) + ( c√d )( a√b ) + ( c√d)(-c√d )
=              
  a2√b2 - ac√b√d + ac√b√d - c2√d2
=              
  a2√b2  -  c2√d2
=              
 

a2b  -  c2d

 

And    a2b  -  c2d   is always rational if  a ,  b ,  c , and  d  are rational.

hectictar  May 10, 2018

8 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.