We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
284
1
avatar+874 

Show that the product of \(a\sqrt{b}+c\sqrt{d}\) and \(a\sqrt{b}-c\sqrt{d}\) is always rational if \(a,b,c\) and \(d\) are rational.

 May 10, 2018
 #1
avatar+8439 
+1
___ The product of   a√b + c√d   and   a√b - c√d
=              
  ( a√b + c√d )( a√b - c√d )
=   ___   ___   ___  
  ( a√b )( a√b ) + ( a√b )( -c√d ) + ( c√d )( a√b ) + ( c√d)(-c√d )
=              
  a2√b2 - ac√b√d + ac√b√d - c2√d2
=              
  a2√b2  -  c2√d2
=              
 

a2b  -  c2d

 

And    a2b  -  c2d   is always rational if  a ,  b ,  c , and  d  are rational.

 May 10, 2018

8 Online Users