+0  
 
0
40
1
avatar+474 

Show that the product of \(a\sqrt{b}+c\sqrt{d}\) and \(a\sqrt{b}-c\sqrt{d}\) is always rational if \(a,b,c\) and \(d\) are rational.

ant101  May 10, 2018
Sort: 

1+0 Answers

 #1
avatar+7048 
+1
___ The product of   a√b + c√d   and   a√b - c√d
=              
  ( a√b + c√d )( a√b - c√d )
=   ___   ___   ___  
  ( a√b )( a√b ) + ( a√b )( -c√d ) + ( c√d )( a√b ) + ( c√d)(-c√d )
=              
  a2√b2 - ac√b√d + ac√b√d - c2√d2
=              
  a2√b2  -  c2√d2
=              
 

a2b  -  c2d

 

And    a2b  -  c2d   is always rational if  a ,  b ,  c , and  d  are rational.

hectictar  May 10, 2018

20 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy