Show that the product of \(a\sqrt{b}+c\sqrt{d}\) and \(a\sqrt{b}-c\sqrt{d}\) is always rational if \(a,b,c\) and \(d\) are rational.
| ___ | The product of a√b + c√d and a√b - c√d | ||||||
| = | |||||||
| ( a√b + c√d )( a√b - c√d ) | |||||||
| = | ___ | ___ | ___ | ||||
| ( a√b )( a√b ) | + | ( a√b )( -c√d ) | + | ( c√d )( a√b ) | + | ( c√d)(-c√d ) | |
| = | |||||||
| a2√b2 | - | ac√b√d | + | ac√b√d | - | c2√d2 | |
| = | |||||||
| a2√b2 - c2√d2 | |||||||
| = | |||||||
| a2b - c2d | |||||||
And a2b - c2d is always rational if a , b , c , and d are rational.