We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
83
1
avatar

\(\text{The parabola with equation $y=ax^2+bx+c$ is graphed below:}\)

\(\text{The zeros of the quadratic $ax^2 + bx + c$ are at $x=m$ and $x=n$, where $m>n$. What is $m-n$? }\)

 Jul 18, 2019
 #1
avatar+103122 
+2

The x coordinate of the vertex  can be found as   -b / (2a)  =  2   ⇒  -b = 4a  ⇒  b  = -4a

 

So.....we have the following quadratic

 

y = ax^2 - 4ax + c

 

And since  (2,1)   and (-4, -3)  are on the graph, we have that

 

a(2)^2 - 4a(2) + c  =  1  ⇒   4a - 8a + c  = 1  ⇒    -4a + c  =  1   ⇒   -32a + 8c  = 8    (1) 

a(-4)^2  - 4a(-4) + c  = -3  ⇒   16a + 16a + c  = -3  ⇒  32a + c  = -3      (2)

 

Add (1)  and (2)   and we have that

9c = 5

c = 5/9

And

-4a + 5/9  =  1

-4a =  4/9

a  = -1//9

And b  = -4(-1/9)  = 4/9

 

So....the quadratic  is

 

y  = (-1/9)x^2 + (4/9)x + 5/9

 

Setting this to 0  and we have that

 

(-1/9)x^2  + (4/9)x + (5/9)  =  0         multiply through by  -9

x^2 - 4x - 5  = 0       factor

(x - 5) ( x + 1)  = 0      set each factor to 0 and solve for x and we have that

 

x - 5  = 0                x + 1  = 0

x  = 5  = m             x  = -1 = n

 

So....m - n  =   5 -(-1)   =   6

 

 

cool cool cool

 Jul 18, 2019

9 Online Users

avatar
avatar