We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
129
2
avatar

The equation of an ellipse is given \(2x^2 - 8x + 3y^2 + 6y + 5 = 0.\) Find the maximum value of the \(x\)-coordinate of a point on this ellipse.

 Jul 29, 2019
 #1
avatar+6045 
+2

\(2x^2 - 8x + 3y^2+6y+5=0\\ 2(x^2-4x) + 3(y^2+2y)+5=0\\ 2(x^2-4x+4-4)+3(y^2+2y+1-1) + 5 = 0\\ 2(x-2)^2-8+3(y+1)^2-3+5=0\\ 2(x-2)^2+3(y+1)^2=3\\ \left(\dfrac{x-2}{\sqrt{\dfrac 3 2}}\right)^2+(y+1)^2 = 1\)

 

\(\text{There are no $xy$ terms so the ellipse isn't rotated at all, thus the maximum $x\\$ coordinate will occur when $y=0$}\\ x-2 = \sqrt{\dfrac 3 2 }\\ x = 2 + \sqrt{\dfrac 3 2}\)

.
 Jul 29, 2019
 #2
avatar+104937 
+1

2x^2  - 8x + 3y^2  + 6y  + 5  = 0

 

2x^2 - 8x + 3y^2  + 6y  =  - 5       compete the square on x , y

 

2 ( x^2 - 4x + 4)  + 3(y^2 + 2y + 1)   =   -5  + 8 + 3

 

2 ( x - 2)^2  +  3 ( y + 1)^2   =  6           divide both sides by 6

 

(x - 2)^2          (y + 1)^2

_______  +     ________    =       1

      3                    2

 

We have the form

 

(x - h)^2          ( y - k)^2

________  +  _________  =  1

     a^2                  b^2

 

The center of this ellipse  is  ( 2, - 1)

 

And the major  axis lies along  x

 

And the max value of x  =   ( 2 + a)  =  (2 + √3)  ≈  3.732

 

Here is a graph that shows this :  https://www.desmos.com/calculator/qu9bzxtafp

 

 

cool cool cool

 Jul 29, 2019

11 Online Users