+0  
 
0
16
1
avatar+2653 

Let a_1, a_2, a_3, \dots, a_8, a_9, a_{10} be an arithmetic sequence. If $a_1 + a_3 = 5$ and $a_2 + a_4 = 6$, then find $a_1$.

 Apr 28, 2024
 #1
avatar+1277 
+1

 

Let "r" = the amount added to each successive term.  

 

a1 + r = a2   and   a2 + r = a3   therefore a3 = a1 + r + r    

 

given that a1 + a3 = 5   therefore (a1) + (a1 + 2r) = 5                 (eq 1)  

 

a1 + r = a2   and   a2 + r = a3   and   a3 + r = a4   therefore a4 = a1 + r + r + r   

 

given that a2 + a4 = 6   therefore (a1 + r) + (a1 + 3r) = 6            (eq 2)   

 

subtract (eq 2) minus (eq 1)   

 

(eq 2) ...............................................  2a1 + 4r = 6    

(eq 1) ...............................................  2a1 + 2r = 5    

                                                                     2r = 1         

                                                                       r = 0.5      

 

substitute r back into (eq 2)               2a1 + (4)(0.5) = 6   

                                                                       2a1 = 4  

                                                                         a1 = 2     

 

check answer  

                          a1 = 2.0 , a2 = 2.5 , a3 = 3.0 , a4 = 3.5    

 

                          a1 +  a3 = 5                a2 +  a = 6   

                         2.0 + 3.0 = 5               2.5 + 3.5 = 6    

 Apr 29, 2024

2 Online Users