+0

# HELP QUICKK!!!!! TYYSM

0
59
2

The graph of $y = ax^2 + bx + c$ is shown below. Find $a \cdot b \cdot c$. (The distance between the grid lines is one unit.)

Asymptote code here:

[asy]
size(150);
real ticklen=3;
real tickspace=2;

real ticklength=0.1cm;
real axisarrowsize=0.14cm;
pen axispen=black+1.3bp;
real vectorarrowsize=0.2cm;
real tickdown=-0.5;
real tickdownlength=-0.15inch;
real tickdownbase=0.3;
real wholetickdown=tickdown;
void rr_cartesian_axes(real xleft, real xright, real ybottom, real ytop, real xstep=1, real ystep=1, bool useticks=false, bool complexplane=false, bool usegrid=true) {
import graph;
real i;
if(complexplane) {
label("$\textnormal{Re}$",(xright,0),SE);
label("$\textnormal{Im}$",(0,ytop),NW);
} else {
label("$x$",(xright+0.4,-0.5));
label("$y$",(-0.5,ytop+0.2));
}

ylimits(ybottom,ytop);
xlimits( xleft, xright);
real[] TicksArrx,TicksArry;

for(i=xleft+xstep; i if(abs(i) >0.1) {
TicksArrx.push(i);
}
}
for(i=ybottom+ystep; i if(abs(i) >0.1) {
TicksArry.push(i);
}
}

if(usegrid) {
xaxis(BottomTop(extend=false), Ticks("%", TicksArrx ,pTick=gray(0.22),extend=true),p=invisible);//,above=true);
yaxis(LeftRight(extend=false),Ticks("%", TicksArry ,pTick=gray(0.22),extend=true), p=invisible);//,Arrows);
}
if(useticks) {
xequals(0, ymin=ybottom, ymax=ytop, p=axispen, Ticks("%",TicksArry , pTick=black+0.8bp,Size=ticklength), above=true, Arrows(size=axisarrowsize));
yequals(0, xmin=xleft, xmax=xright, p=axispen, Ticks("%",TicksArrx , pTick=black+0.8bp,Size=ticklength), above=true, Arrows(size=axisarrowsize));

} else {
xequals(0, ymin=ybottom, ymax=ytop, p=axispen, above=true, Arrows(size=axisarrowsize));
yequals(0, xmin=xleft, xmax=xright, p=axispen, above=true, Arrows(size=axisarrowsize));
}
};
rr_cartesian_axes(-7,1,-3,7);
real f(real x) {return 1/2*x^2 + x + 3/2;}
draw(shift((-2,-3))*graph(f,-5,3,operator ..), red);
[/asy]

Thank you thank you  thank you!!

Nov 15, 2020

#1
0

The product abc is -44.

Nov 16, 2020
#2
0

sorry... that's incorrect...

Nov 16, 2020