What is the largest integer n such that 3^n is a factor of $1 \times 3 \times 5 \times \ldots \times 97 \times 99$?
productfor(n, 1, 50, (2*n - 1) = 272539213 9750729502 9807132454 0091863329 0796330545 8034137343 2882344310 6201171875
Factor the above answer: 3^26×5^12×7^8×11^5×13^4×17^3×19^3×23^2×29^2×31^2×37×41×43×47×53×59×61×67×71×73×79×83×89×97 (81 prime factors, 24 distinct)
The largest n = 26