Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
437
2
avatar

Solve

xy + x + y = 23

yz + y + z = 31

zx + z + x = 47

in real numbers.

 Jun 17, 2021
 #1
avatar+130466 
+1

xy  +  x +  y  =  23  ⇔     y =  (23 - x) / (x + 1)       (1)

yz  +  y + z   =   31              (2)

zx  + z +  x     =  47  ⇒   z   =  ( 47 - x)  / ( x + 1)    ( 3)

 

Sub

(1)  and (3)  into (2)

 

(23 - x) / ( x + 1) *  ( 47 - x) / (x + 1)  +  (23 - x)/(x + 1)  +  (47 - x) / ( x + 1)  =   31

 

Multiply  through by ( x + 1)^2

 

(23 - x) ( 47 - x)  +  (23 - x) ( x + 1)   + (47 - x) (x + 1)  = 31  (x + 1)^2

 

Simplifying this we  get  that

 

-32x^2  -64x + 1120  =  0

 

32x^2  + 64x  -  1120  =  0        divide through by  32

 

x^2  + 2x  - 35  =  0         factor

 

( x + 7) ( x - 5)  =  0

 

Seting  each  factor to 0 and  solving for  x  we  get   that

 

x =  -7   y = -5  , z  = -9

      or

x  =  5    y =  3    z  = 7

 

 

cool cool cool

 Jun 17, 2021
 #2
avatar+26396 
+1

Solve
xy+x+y=23yz+y+z=31zx+z+x=47
in real numbers.

 

xy+x+y=23(x+1)(y+1)1=23(x+1)(y+1)=24(1)yz+y+z=31(y+1)(z+1)1=31(y+1)(z+1)=32(2)zx+z+x=47(z+1)(x+1)1=47(z+1)(x+1)=48(3)

 

Let a=x+1, b=y+1, c=z+1

 

ab=24(4)bc=32(5)ca=48(6)

 

(4)(6)(5):abcabc=244832a2=36a=±6x+1=±6x1=5x2=7(x+1)(y+1)=24(±6)(y+1)=246(y1+1)=24y1+1=4y1=3(6)(y2+1)=24y2+1=4y2=5(z+1)(x+1)=48(±6)(z+1)=486(z1+1)=48z1+1=8z1=7(6)(z2+1)=48z2+1=8z2=9

 

laugh

 Jun 18, 2021

2 Online Users

avatar