xy + x + y = 23 ⇔ y = (23 - x) / (x + 1) (1)
yz + y + z = 31 (2)
zx + z + x = 47 ⇒ z = ( 47 - x) / ( x + 1) ( 3)
Sub
(1) and (3) into (2)
(23 - x) / ( x + 1) * ( 47 - x) / (x + 1) + (23 - x)/(x + 1) + (47 - x) / ( x + 1) = 31
Multiply through by ( x + 1)^2
(23 - x) ( 47 - x) + (23 - x) ( x + 1) + (47 - x) (x + 1) = 31 (x + 1)^2
Simplifying this we get that
-32x^2 -64x + 1120 = 0
32x^2 + 64x - 1120 = 0 divide through by 32
x^2 + 2x - 35 = 0 factor
( x + 7) ( x - 5) = 0
Seting each factor to 0 and solving for x we get that
x = -7 y = -5 , z = -9
or
x = 5 y = 3 z = 7
Solve
xy+x+y=23yz+y+z=31zx+z+x=47
in real numbers.
xy+x+y=23(x+1)(y+1)−1=23(x+1)(y+1)=24(1)yz+y+z=31(y+1)(z+1)−1=31(y+1)(z+1)=32(2)zx+z+x=47(z+1)(x+1)−1=47(z+1)(x+1)=48(3)
Let a=x+1, b=y+1, c=z+1
ab=24(4)bc=32(5)ca=48(6)
(4)∗(6)(5):ab∗cabc=24∗4832a2=36a=±6x+1=±6x1=5x2=−7(x+1)(y+1)=24(±6)(y+1)=246(y1+1)=24y1+1=4y1=3(−6)(y2+1)=24y2+1=−4y2=−5(z+1)(x+1)=48(±6)(z+1)=486(z1+1)=48z1+1=8z1=7(−6)(z2+1)=48z2+1=−8z2=−9