We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
63
1
avatar

Let f(x) be a quartic polynomial with integer coefficients and four integer roots. Suppose the constant term of f(x) is 6.

(a) Is it possible for x=3 to be a root of f(x)?

(b) Is it possible for x = 3 to be a double root of f(x)?

Prove your answers.

 Aug 9, 2019
 #1
avatar+103122 
+1

(a) Is it possible for x=3 to be a root of f(x)?
 

Yes.....suppose we  have 

 

(x - 1)^2 ( x - 2) ( x - 3)......x = 3 is a root.....and expanding this we  get......x^4 - 7 x^3 + 17 x^2 - 17 x + 6

 

(b) Is it possible for x = 3 to be a double root of f(x)?

 

Let's suppose that it is possible

 

Let the other roots be   a, b     where a, b are integers....and we have that

 

(x - a) ( x - b) ( x - 3) ( x - 3)  =

 

(x^2 - (a + b) x + ab) ( x^2 - 6x + 9)  =

 

x^4 -(a + b)x^3 + abx^2  - 6x^3 + 6(a+b)x^2 -6abx + 9x^2 - 9(a + b)x + 9ab

 

This implies that    9ab   = 6  ⇒    ab  = 6 / 9  ⇒     ab  =  2 / 3

 

But a,b are integers.....and  integers multiplied together  must  produce an integer......

 

So...it is not possible  fro x = 3 to be a  double-root in this case

 

cool cool cool

 Aug 9, 2019

20 Online Users

avatar
avatar
avatar
avatar