We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
63
1
avatar

Find all integers x for which there exists an integer y such that 1/x + 1/y = 1/7

(In other words, find all ordered pairs of integers (x,y)  that satisfy this equation, then enter just the x's from these pairs.)

 Aug 26, 2019
 #1
avatar+102913 
+2

1/x  + 1/y  = 1/7

 

Since both x and y  will be greater than 7,   let z  =7 and we can write this

 

1/ ( z + a)  +   1 / (z + b)    =   1 / z        get a common denominator on the right

 

[ z + b + z + a ]               1

_____________   =     ____        simplify     

(z + a) (z + b)                 z

 

[2z + a + b]                         1

_______________   =      _____           cross-multiply

z^2 + az + bz+ ab               z

 

 

2z^2 + az + bz =      z^2 + az + bz  + ab   

 

z^2    =    ab

 

7^2  = ab

 

49  = ab

 

We have these pairs  of integers  ab  that  multiply to  49

 

(a,b)   =  (-7, -7)     So    z + a  = x =  0      and z + b = y = 0      we cannot divide by 0 so reject this pair

 

(a, b)  =  (7, 7)     so  z + a  = x =  14   qnd z + b  = y =14       so x = 14   and b  = 14

 

(a, b)  = (1, 49)  so   z + a = x =  8   and z + b =  = y = 56     so x = 8  and b  = 56

 

So

 

(x, y)  =  ( 14, 14)   and ( 8, 56)   or (56, 8)

 

 

cool cool cool

 Aug 26, 2019
edited by CPhill  Aug 26, 2019

20 Online Users

avatar