+0

# help urgent

0
80
1

A circle is tangent to the positive x-axis at x=3. It passes through the distinct points (6,6)  and (p,p) What is the value of  (p)? Express your answer as a common fraction.

May 13, 2020

#1
+111456
+1

One point  on the circle  is  (3,0)   and  the other  is  (6,6)

The center  must be   (3, b)  since the circle is tangent to the x axis

Since  the  radial distance from (3,0)  to (3, b)   =  the  same radial distance from (6,6) to ( 3,b)

So....using the square of the distances  we  have that

b^2   = ( 6-3)^2  + (6 - b)^2

b^2  = 9  + 36 - 12b + b^2

12b = 45

b = 45/12   =  15/4  =  the radius of the circle

So  we  equation of the circle  is

(x - 3)^2  + (y - 15/4)^2 = (15/4)^2

Since (p,p)  is on the circle we have that

(p - 3)^2  + ( p - 15/4)^2  =(15/4)^2

p^2  - 6p + 9 + p^2 - (15/2)p + (15/4)^2 = (15/4)^2

2p^2  - (6 + 15/2)p  + 9  =  0

2p^2  - (27/2)p + 9  = 0

4p^2 - 27p + 18  =  0  factor  as

(4p - 3) ( p - 6)  =  0

Setting both factors to 0 and so;ving for  p we get that  p = 6   (we already know this)

or

p = (3/4)

So  (p,p)  = (3/4 , 3/4)

See the graph here  : https://www.desmos.com/calculator/hasagqw5bw

May 13, 2020