We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
112
1
avatar

In an equation of the form k = ax^2 + bx + c with a > 0, the least possible value of k occurs at x = -b/(2a). In the equation k = (6x + 12)(x - 8), what is the least possible value for k?

 

Very much apprecited.

 Feb 26, 2019
 #1
avatar+103131 
+1

k = (6x + 12)(x - 8)     expand this

 

k = 6x^2 + 12x - 48x - 96

 

k = 6x^2 - 36x - 96

 

The minimum value for k occurs at   x = - [ -36] / [ 2 * 6 ]  = 36 /12  = 3

 

So....the minimum value of k is 

 

6(3)^2 - 36(3) - 96 =  

 

54 - 108 -  96 =

 

-54 - 96 =

 

-150

 

 

cool  cool  cool

 Feb 26, 2019

15 Online Users