+0  
 
0
72
2
avatar

1. Let \[f(x) = \left\{ \begin{array}{cl} 2x + 1 & \text{if } x \le 3, \\ 8 - 4x & \text{if } x > 3. \end{array} \right.\]Find the sum of all values of $x$ such that $f(x) = 0.$

2. Find the domain of $\frac{x^2 + 10x + 21}{x^2 + 4x - 21}$. (Express your answer using interval notation.)

Guest Aug 21, 2018
 #1
avatar+91186 
+1

\(f(x) = \left\{ \begin{array}{cl} 2x + 1 & \text{if } x \le 3, \\ 8 - 4x & \text{if } x > 3. \end{array} \right.\ \)

 

Find the sum of all values of x such that f(x) = 0

 

0  =  2x +  1    subtract  1  from each side

-1  = 2x           divide both sides by 2

-1/2  = x

 

And

0  = 8 - 4x     add 4x to both sides

4x  = 8          divede both sides   by  4

x  =  2       [  not  in the domain  of the second function ]

 

So  the  sum  of all  values  such that f(x)  = 0   is  just   -1/2

 

 

cool cool  cool

CPhill  Aug 21, 2018
 #2
avatar+91186 
+1

2. Find the domain of {x^2 + 10x + 21}/{x^2 + 4x - 21}. (Express your answer using interval notation.)

 

The domain will only be restricted by all the values of x that make the  denominator  = 0 

 

So we have

 

x^2 + 4x  - 21    =  0       factor

 

(x + 7)  ( x - 3)   =   0

 

Set  both  factors to 0  and solve for x   and we havethat   x  = -7   and  x = 3

 

So....the domain is   (-infinity, -7) U ( -7, 3) U (3, infinity)

 

 

cool cool cool

CPhill  Aug 21, 2018

20 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.