We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
109
1
avatar

1) Let \(p(x,y) = \begin{cases} x + y &\quad \text{if } x \ge 0 \text{ and } y \ge 0, \\ x - 2y &\quad \text{if } x < 0 \text{ and } y < 0, \\ 3x + y &\quad \text{otherwise}. \end{cases} \)

What is p(p(1,-1),p(-5,-2))?

2) How many positive integers \(n\le 2009\) have the property that \(\lfloor{\log_2(n)}\rfloor\) is odd?]

Thanks!

 Aug 10, 2019
 #1
avatar+105544 
0

Please put your second question in a different post. (And delete it from here)

 Aug 10, 2019

19 Online Users

avatar