We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
81
1
avatar

1. Find all integers n for which \(n^3 = (n-1)^3+(n-2)^3+(n-3)^3.\)

 

Please put your second question on a different post - Melody.

 May 23, 2019
edited by Melody  May 24, 2019
 #1
avatar+102355 
+1

1.

 

n^3  = ( n - 1)^3 +( n - 2)^3 + ( n - 3)^3

 

Simplify

 

n^3  =  3n^3 -18n^2 + 42n - 36     rearrange as

 

2n^3 - 18n^2 + 42n - 36  = 0        divide throught by 2

 

n^3 - 9n^2 + 21n - 18  =  0    [ split up the 9n^2 term as 6n^2 + 3n^2 ]

 

n^3 - 6n^2 + 3n^2 +21n - 18  = 0     this factors as

 

n^2 ( n - 6) + 3(n^2 + 7n - 6)  = 0

 

n^2(n - 6)  + 3 (n - 6) ( n + 1) = 0

 

(n - 6 ) [ n^2 + 3(n + 1) )  = 0

 

(n - 6) [ n^2 + 3n + 3]  = 0

 

The second factor has no real solutions when set to 0  [ the discriminant is negative ]

 

So

 

n - 6  =  0

 

n = 6

 

 

 

cool cool cool 

 May 24, 2019
edited by CPhill  May 24, 2019

17 Online Users