We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
74
1
avatar

1) Given that \(x^2 + \lfloor x \rfloor = 75,\)find all possible values for $x.$

2) Let \((x_1,y_1),(x_2,y_2),\dots,(x_n,y_n)\) be the real solutions to \(\begin{align*} |y| - \frac{2x}{|x|} &= -1, \\ x|x| + y|y| &= 24. \end{align*}\)Find \(x_1 + y_1 + x_2 + y_2 + \dots + x_n + y_n.\)

3) Let \(f(x) = \begin{cases} x^2+2 &\text{if } x If the graph y=f(x) is continuous, find the sum of all possible values of n.

 Aug 5, 2019
 #1
avatar+5798 
+1

1)

\(\text{well we can see without much difficulty that $x \in (8, 9)$ somewhere}\\ \text{in that range $\lfloor x \rfloor = 8$}\\ \text{So it must be that}\\ x^2 = 75-8 = 67\\ x = \sqrt{67}\)

 

2)

\(|y| - \dfrac{2x}{|x|} = -1\\ |y|-2\text{sgn$(x)= -1$}\\ |y|=-1 + 2\text{sgn$(x)$}\\ \text{The only solutions to this are }\\ x>0,~y = \pm 1\)

 

\(\text{applying the results of the previous equation to the second}\\ x^2 +1 = 24\\ x^2 -1 = 24\\ x =\sqrt{23}, ~ 5\\ \text{the ordered pairs of solutions are }\\ (5,-1),~(\sqrt{23},1)\\ \text{and the sum the problem asks for is $\sqrt{23}+5$} \)

.
 Aug 6, 2019

13 Online Users

avatar
avatar