We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
76
1
avatar

1) Find all real numbers x that satisfy the equation |x+4| + |x-7| = |2x-1|.

2) Find all x for which \(\left| x - \left| x-1 \right| \right| = \lfloor x \rfloor.\) Express your answer in interval notation.

 Aug 5, 2019
 #1
avatar+23070 
+1

Help with absolute value

 

1)

Find all real numbers x that satisfy the equation \(\large{\mathbf{|x+4| + |x-7| = |2x-1|}}\).

 

There are three discontinuities at \(x=-4,\ x=7,\ x=\dfrac{1}{2}\).
These digits divide the number range from \(-\infty\) to \(+\infty\) into the four ranges \(x<-4\),   \(-4\leq x < \dfrac{1}{2}\),   \(\dfrac{1}{2}\leq x <7\)  and  \(x\geq 7\).

 

\(\begin{array}{lrcll} x<-4 :& -(x+4)-(x-7)+(2x-1) &=& 0 \\ & -x-4-x+7+2x -1 &=& 0 \\ &6 &=& 0 \quad | \quad \text{no solution!} \\ -4\leq x < \dfrac{1}{2} : & (x+4)-(x-7)+(2x-1) &=& 0 \\ & x+4-x+7+2x-1 &=& 0 \\ & 2x+10 &=& 0 \\ & 2x &=& -10 \\ & x &=& -5 \quad | \quad \text{no solution! Because }-4\leq x < \dfrac{1}{2} \\ \\ \dfrac{1}{2}\leq x <7 : & (x+4)-(x-7)-(2x-1) &=& 0 \\ & x+4-x+7-2x+1 &=& 0 \\ &-2x+12 &=& 0 \\ & 2x &=& 12 \\ & \mathbf{x} &=& \mathbf{6} \\ \\ x\geq 7 : & (x+4)+(x-7)-(2x-1) &=& 0 \\ & x+4+x-7-2x+1 &=& 0 \\ & -2 &=& 0 \quad | \quad \text{no solution!} \\ \end{array}\)

 

\(\mathbf{x = 6}\)  satisfy the equation \(\large{\mathbf{|x+4| + |x-7| = |2x-1|}}\).

 

laugh

 Aug 6, 2019

7 Online Users

avatar