+0  
 
0
48
1
avatar

Define $g$ by $g(x)=5x-4$. If $g(x)=f^{-1}(x)-3$ and $f^{-1}(x)$ is the inverse of the function $f(x)=ax+b$, find $5a+5b$.

Guest Jul 20, 2018
 #1
avatar+19813 
+1

Define $g$ by $g(x)=5x-4$. If $g(x)=f^{-1}(x)-3$ and $f^{-1}(x)$ is the inverse of the function $f(x)=ax+b$,

find $5a+5b$.

 

\(\begin{array}{|rcl|rcl|} \hline g(x)&=& 5x-4 & f(x) &=& ax + b \quad & | \quad x \leftrightarrow y \\ g(x)&=& f^{-1}(x)-3 & x &=& ay + b \\ && & ay &=& x-b \\ f^{-1}(x)-3 &=& 5x -4 & y &=& \dfrac{x-b}{a} \\ f^{-1}(x) &=& 5x -4+3 & f^{-1}(x) &=& \dfrac{x-b}{a} \\ \hline f^{-1}(x) &=& {\color{red}5}x {\color{green}-1} & f^{-1}(x) &=& {\color{red}\dfrac1a} x {\color{green}-\dfrac ba} \\ \hline \end{array} \)

 

compare:

\(\begin{array}{|rcll|} \hline 5 &=& \dfrac1a \\\\ \mathbf{a} &\mathbf{=} & \mathbf{\dfrac15} \\ \hline \end{array} \begin{array}{|rcll|} \hline -1 &=& -\dfrac ba \\\\ 1 &=& \dfrac ba \\\\ b &=& a \\ \mathbf{b} &\mathbf{=} & \mathbf{\dfrac15} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline 5a+5b &=& 5\cdot \dfrac15 + 5\cdot \dfrac15 \\ &=& 1+1 \\ &=& 2 \\ \hline \end{array} \)

 

laugh

heureka  Jul 20, 2018

17 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.