\(\frac{d}{dx}\left(e^{3x}\sin \left(3x\right)\right)\\ \frac{d}{dx}\left(e^{3x}\right)\sin \left(3x\right)+\frac{d}{dx}\left(\sin \left(3x\right)\right)e^{3x}\\ \frac{d}{dx}\left(e^{3x}\right)=e^{3x}\cdot \:3\\ \frac{d}{dx}\left(\sin \left(3x\right)\right)=\cos \left(3x\right)\cdot \:3\\ e^{3x}\cdot \:3\sin \left(3x\right)+\cos \left(3x\right)\cdot \:3e^{3x}\\\)
.